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1 Motivation and context

Geometric quantization [1] and its variants (such as Berezin and Berezin-Toeplitz quan-

tization) arose as techniques for ‘quantizing’ symplectic manifolds in an attempt to give

rigorous formulations to the canonical quantization procedure for systems with a finite

number of degrees of freedom. Beyond its importance in physics, this theory leads to cer-

tain notions of ‘quantum’ symplectic geometry, which are of independent mathematical

interest. It also leads to a certain class of regularizations for quantum field theories [2].

Finally, the worldvolumes of D-branes placed in certain superstring vacua can be described

in terms of quantized spaces [3, 4].

Since many classical mechanical models admit canonical formulations containing both

even and odd variables, it is natural to extend such quantization prescriptions to the case of

symplectic supermanifolds. In particular, quantized Hodge supermanifolds should provide

supersymmetry-preserving regularizations of supersymmetric quantum field theories.

Geometric quantization was independently developed by Kostant [5, 6] and Souriau [7]

and proceeds in two steps. First, one fixes a positive complex line bundle over the manifold

to be quantized, whose space of L2-sections yields a prequantization. Second, one picks a

polarization on this bundle, which can be used in order to reduce the space of L2-sections

to a proper subspace, thereafter identified with the quantum Hilbert space. The question

of prequantization for supermanifolds was considered in [6], later expanded on in [8]. The

appropriate definition of positive super line bundles was given in [9].

In the present paper, we do not consider geometric quantization but the closely related

Berezin and Berezin-Toeplitz methods, extending them to Hodge supermanifolds. More

precisely, we consider the superextension of the generalized Berezin and Berezin-Toeplitz

quantizations of [10], which subsume the classical Berezin and Berezin-Toeplitz cases. Some

previous work in this direction, though restricted to the case of certain homogeneous su-

permanifolds, can be found1 in [11–13].

Berezin quantization was introduced in [15] while its Berezin-Toeplitz variant is dis-

cussed e.g. in [16] and more recently in [17]. Generalized Berezin and Berezin-Toeplitz

quantizations were defined and analyzed in [10] and include interesting new possibilities,

such as Berezin-Bergman quantization. The latter prescription is natural in contexts aris-

ing from algebraic geometry. In the present paper, we extend the results of [10] to the class

of Hodge supermanifolds.

The paper is organized as follows. Section 2 recalls some basic notions of supergeometry

and introduces the concept of Hodge supermanifolds. In section 3, we give the construction

of supercoherent states and of generalized Berezin and Berezin-Toeplitz quantizations for

Hodge supermanifolds, as well as a brief discussion of their properties. Section 4 considers

various special cases: the analogues of classical Berezin and Berezin-Toeplitz quantiza-

tions, the quantizations of affine and projective superspaces as well as Berezin-Bergman

superquantization. The last section shows how one can employ our methods to construct

supersymmetry-preserving regularizations of supersymmetric quantum field theories.

1The work cited relies on group theoretic methods and on a super-generalization of Perelomov’s coherent

states [14], none of which can can be applied directly to general Hodge supermanifolds as defined below.
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2 Hodge supermanifolds, polarizations and Bergman supermetrics

In this section, we recall some basic notions from the theory of supermanifolds. The reader

can consult [18, 19] for further details. To understand some of the concepts presented in

the following, the reader might find it helpful to first study the corresponding definitions

for ordinary manifolds as given in [10].

2.1 Super hermitian pairings

Recall that a complex supervector space E is a vector space over the complex numbers en-

dowed with a Z2-grading E = E+⊕E−. A super Hermitian pairing on E is a C-sesquilinear

even form ( , ) : E × E → C which is graded-Hermitian, i.e. it satisfies the condition

(s, t) = (−1)s̃t̃(t, s) (2.1)

for any two Z2-homogeneous elements s, t of E with degrees s̃, t̃. Our convention for

sesquilinear forms is that they are antilinear in the first variable.

Evenness of the pairing implies that (s, t) vanishes unless s̃ = t̃. Hence a super Hermi-

tian pairing is completely determined by its restrictions to E+ and E−. Relation (2.1) shows

that the first restriction is a Hermitian form on E+, while the second is anti-Hermitian on

E−. Thus a super Hermitian form can be expressed as:

(s, t) = (s+, t+)+ + i(s−, t−)− (2.2)

where ( , )± are Hermitian pairings on E±. Here s = s+ + s− and t = t+ + t− are the

decompositions of s, t into even and odd components. Conversely, a choice of Hermitian

forms on E± determines a super Hermitian pairing on E.

A super Hermitian pairing ( , ) is called nondegenerate if it is nondegenerate as a

sesquilinear form, i.e. if vanishing of (s, t) for all t implies s = 0. This amounts to the

requirement that ( , )+ and ( , )− are both nondegenerate. A super Hermitian pairing is

called a superscalar product if it is nondegenerate and if ( , )+ is positive-definite on E+.

A super Hermitian form on E induces an even antilinear map Φ : E → E∗ =

HomC(E,C) given by:

Φ(s)(t) = (s, t) ,

which is bijective iff the pairing is nondegenerate. In that case, the dual supervector space

E∗ has an induced super Hermitian pairing ( , )∗ given by

(η, ρ)∗ = (−1)η̃ρ̃(Φ−1(ρ),Φ−1(η)) . (2.3)

Let us fix a nondegenerate super Hermitian pairing on E. The super Hermitian con-

jugate of a homogeneous linear operator A on E is defined through:

(As, t) = (−1)Ãs̃(s,A†t) ∀s, t ∈ E homogeneous (2.4)

and extended to inhomogeneous operators in the obvious manner. When A is even (A =

A+ +A− with A± ∈ End(E±)), this boils down to A† = A†
+ ⊕ A†

−, where A†
± : E± → E±

– 3 –
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are the Hermitian conjugates of A± with respect to ( , )±. When A is odd (A = A1 + A2

with A1 : E− → E+ and A2 : E+ → E−), we find A† = i(A†
2 + A†

1) i.e. (A†)1 = iA†
2 and

(A†)2 = iA†
1, where A†

1 : E+ → E− and A†
2 : E− → E+ are the Hermitian conjugates of A1

and A2 with respect to the pairings ( , )+ and ( , )− on E+ and E−.

Super Hermitian conjugation gives a conjugation of the superalgebra (End(E), ◦), i.e.

an even and involutive antilinear antiautomorphism of this superalgebra. In particular,

we have:

(AB)† = (−1)ÃB̃B†A† . (2.5)

This superalgebra is also endowed with the usual supertrace str : End(E) → C, which is

an even map and satisfies:

str(AB) = (−1)ÃB̃str(BA) . (2.6)

Notice2 that str(A†) = str(A).

The underlying supervector space End(E) carries the super Hilbert-Schmidt pairing

induced by ( , ), which is defined through:

〈A,B〉HS = str(A†B) ∈ C . (2.7)

This is itself a non-degenerate super Hermitian pairing on End(E), and in particular

it satisfies:

〈A,B〉HS = (−1)ÃB̃〈B,A〉HS . (2.8)

Notice that 〈 , 〉HS need not be a superscalar product even when ( , ) is.

2.2 Supermanifolds

Throughout this paper we will work with supermanifolds in the sense of Berezin (see [18]).

Recall that a superspace over C is a locally super ringed space over the complex numbers, i.e.

a pair (X,A) where X is a topological space and A is a sheaf of superalgebras over C such

that the stalk Ax of A at any point x ∈ X is a local superalgebra. Given a superspace,

we let An ⊂ A be the subsheaf of nilpotent elements of A, and set Ared := A/An and

Â = An/A2
n. We say that a superspace (X,A) is a real (resp. complex) supermanifold of

dimension (m|n) if:

(1) (X,Ared) is the locally ringed space of smooth (resp. holomorphic) complex-valued

functions associated with a real (resp. complex) manifold structure on X of real

(resp. complex) dimension m,

(2) Â is locally free of purely odd finite rank 0|n as a sheaf of Ared-supermodules,

(3) A and ∧n
Ared

Â are locally isomorphic as sheaves of superalgebras over Ared.

2It suffices to check this for even operators A since str(A) vanishes when A is odd.
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The natural surjection A → Ared induces a ringed space embedding (X,Ared) → (X,A)

whose underlying map of spaces is the identity on points of X. The ringed space (X,Ared)

is denoted by Xred and called the reduced space associated with (X,A); this will also

be identified with the corresponding (real or complex) manifold. According to (1) in the

definition, Xred is the ringed space of smooth (resp. holomorphic) functions associated

with a real (resp. complex) manifold of real (resp. complex) dimension m. In the real

case, we have Ared = C∞(Xred) while in the complex case we have Ared = O(Xred). A

supermanifold X is called compact, connected etc. if the underlying manifold Xred has the

corresponding property.

Each of the local rings Ax (x ∈ X) is an augmented superalgebra, whose augmenta-

tion morphism is the natural projection ǫx : Ax → Ax/mx = k (mx is the unique maximal

ideal of Ax while k = R or C for real and complex supermanifolds, respectively). This is a

k-superalgebra morphism from Ax to k, where the latter is viewed as a commutative super-

algebra over itself concentrated in degree zero. The augmentation morphism is sometimes

called the ‘body map’, while ǫx(f) is called the ‘body’ of an element f of Ax. When X has

dimension (m|n), we have isomorphisms of superalgebras Ax
∼= k[ζ1 . . . ζn] (the Grassmann

k-algebra on n odd generators ζ1 . . . ζn) for any x ∈ X. Furthermore, mx can be identified

with the maximal ideal 〈ζ1 . . . ζn〉 of this Grassmann superalgebra.

Condition (2) in the definition means that Â is the sheaf of smooth (resp. holomorphic)

sections of the parity change ΠE of a complex rank n vector bundle E over Xred, which is a

holomorphic bundle in the complex supermanifold case. By convention, we will denote A by

O respectively C for the case of complex resp. real supermanifolds, and let O respectively

C denote the corresponding reduced sheaves.

The following notations will be used later in this paper. For any point x ∈ X, we

let A×
x denote the subgroup of invertible elements Ax, i.e. those elements f of Ax such

that ǫx(f) 6= 0. We also let A×,ev
x denote the subgroup consisting of all even elements of

A×
x . Finally, we let A× and A×,ev be the subsheaves of A consisting of those elements

whose stalk values at all points x belong to A×
x and A×,ev

x respectively. We have sheaf

inclusions A×,ev ⊂ A× ⊂ A. When X is a real supermanifold, we let C>0 denote the

subsheaf of C(X) consisting of ‘superfunctions with positive body’. More precisely, we set

C>0(U) = {f ∈ C(U)|ǫx(f(x)) > 0 ∀x ∈ U}, where U is any open subset of X (here

f(x) ∈ Cx is the stalk value of f at x). Notice that C>0 is a subsheaf of C×.

Supervector bundles. Let (X,A) be a supermanifold of dimension (m|n) over k = R

or C (i.e. a real or complex supermanifold). A superfibration E
π→ X is a fibration in

the category of supermanifolds over k, while a super fiber bundle is a fiber bundle in

that category. Such a fiber bundle is called a supervector bundle of rank (p|q) if its local

trivializations over sufficiently small sets are modeled on the bundle U ×Ap|q with U ⊂ X,

while its transition functions are valued in the supergroup GLk(p|q). Here Ap|q is the affine

superspace of dimension (p|q) over k. The associated sheaf of sections is defined through

E = HomA(A,AE,lin), where AE,lin is the subsheaf of the structure supersheaf AE of E

whose local sections are linear along the fibers of E. This sheaf is locally free of rank (p|q)
as a sheaf of A-supermodules. Conversely, any sheaf E of A-supermodules which is locally

– 5 –
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free of rank (p|q) can be viewed as the sheaf of sections of a supervector bundle of rank

(p|q) given by E = Spec[S•
A(Ev)] (with the obvious projection) where Ev = HomA(E ,A)

is the dual sheaf and S•
A is the functor on the category of sheaves of A-supermodules

induced by taking the total graded symmetric algebra over a supermodule. Connections

on super-vector bundles are defined by mimicking the classical theory.

Restriction and reduction of sheaves and supervector bundles. Given a sheaf E
of A-supermodules on X, its restriction to Xred is the sheaf on X defined through:

Eres := A⊗Ared
E ∼= E/An · E . (2.9)

This is a sheaf of Ared-supermodules, i.e. sheaf of supermodules on the ringed space Xred.

The subsheaf Ered := (E)+res of even elements in Eres is called the reduction of E ; it is an

ordinary sheaf of modules over Xred.

When E is locally free of rank (p|q) with associated supervector bundle E
π→ X,

then E is locally isomorphic with the free sheaf Ap|q and Eres is locally isomorphic with

Ap|q
red = A⊕p

red⊕ (ΠAred)⊕q, thus locally free as a sheaf of Ared-supermodules and represented

by a supervector bundle Eres = E+
res ⊕ E−

res
πres→ Xred of rank (p, q) over Xred, called the

restriction of the supervector bundle E. The image of a global section s of E though the

projection E(X) → Eres(X) is denoted by sres and called the restriction of s. Notice that

sres = 1A(X) ⊗Ared(X) s. The sheaf Ered is again locally free and represented by the ordinary

vector bundle Ered = E+
res → Xred (the even subbundle of Eres) on Xred. Notice that the

total space Ered is the underlying ordinary manifold of the total supermanifold E which

is the total space of E
π→ X . Also notice that when E has rank (p|0) (i.e. when q = 0),

then Ered = Eres.

Notice that the sheaf of supersections of E can be described as E = A⊗Ared
Eres.

Natural sheaves and bundles. The tangent sheaf of X is the sheaf TX := Der(A)

of derivations of A. This is locally free of rank (m|n). The super vector bundle TX

associated with TX is called the tangent bundle of X. Super-vector fields on X are defined

as global supersections of TX . The cotangent sheaf is the dual sheaf T v
X = HomO(TX ,C),

whose global supersections are the one-forms on X. It is again locally free and represented

by the cotangent bundle T ∗X. Similarly, one defines the supertensor sheaves TX

(p
q

)
=

T ⊗p
X ⊗ (T v

X)⊗q, whose global sections are tensor superfields of type
(
p
q

)
on X. These sheaves

are locally free and represented by the tensor bundles T
(p
q

)
(X). The (locally free) sheaf

of p-forms is Ωp
X := ∧pT v

X , where ∧ is the graded wedge product; this sheaf is represented

by the p-form bundle ΛpT ∗M (generally, one has Ωp
X 6= 0 for all p ≥ 0). The de Rham

super differential d is defined by mimicking the classical construction. We also have the

symmetric supertensor sheaves Sp
A(TX), which are represented by the vector super bundle

Sp(TX) etc. The reductions of all these sheaves and bundles are the corresponding natural

sheaves and bundles of Xred. For example, we have (TX)red = T (Xred) etc.

2.3 Complex supermanifolds

A complex supermanifold (X,O) of dimension (m|n) has an underlying real supermanifold

(X, C) of dimension (2m|2n) (see [20]). We have a morphism of ringed spaces (X, C) →

– 6 –
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(X,O) whose underlying map of spaces is the identity and whose sheaf map O → C is an

inclusion. There is a local isomorphism C ∼= Ō ⊗C O where the sheaf Ō of antiholomorphic

superfunctions and the conjugation ¯ : O → Ō are defined [20] using the fact that O is

locally the exterior algebra of an O-supermodule. Similarly, we have a local isomorphism

Ĉ ∼= ˆ̄O⊗C Ô. As for ordinary complex manifolds, we have super-Dolbeault decompositions:

Ωk
X = ⊕p+q=kΩp,q

X ,

and the global sections of Ωp,q
X are called (p, q)-forms on X. Decomposing d accordingly

gives the Dolbeault super differentials ∂ and ∂̄.

For any holomorphic supervector bundle E of rank (p|q) on (X,O), we let O(E) denote

the sheaf of holomorphic supersections of E and C(E) its sheaf of smooth supersections.

These sheaves are locally free of rank (p|q) respectively (2p|2q) over O and C respectively.

We have C(E) = C ⊗C∞ C∞(Eres) and O(E) = O ⊗O O(Eres), where C(Eres) and O(Eres)

are the ordinary sheaves of smooth resp. holomorphic sections of the supervector bundle

Eres over the ordinary manifold Xred.

We let H0(E) = O(E)(X) and Γ(E) = C(E)(X) denote the spaces of global holo-

morphic and smooth supersections; these are supermodules over the superalgebras O(X)

and C(X) respectively. When X is compact, we have O(X) = C while C(X) is infinite-

dimensional as a C-vector space unless Xred consists of a finite set of points. In this case,

H0(E) is a finite-dimensional vector space while Γ(E) is infinite-dimensional as a vector

space unless Xred consists of a finite set of points.

A holomorphic super line bundle on (X,O) is a holomorphic supervector bundle L of

rank (1|0). We say that L is positive if Lred is positive as an ordinary line bundle over X.

Notice that any super line bundle satisfies Lres = Lred.

Hermitian structures. Let E be a complex supervector bundle and E = C(E) be its

sheaf of smooth supersections. A super Hermitian pairing h on E is a global supersection

of the sheaf HomC(E ⊗C E , C) such that its value hp on the stalk at any point p ∈ X is a

super Hermitian pairing on the fiber Ep. We say that h is nondegenerate if each hp is. We

say that h is positive-definite (or a Hermitian supermetric) if each hp is positive-definite,

i.e. if hred is a Hermitian metric on the bundle Ered. A Hermitian supermetric g on TX is

called a Hermitian supermetric on X, in which case the pair (X, g) is called a Hermitian

supermanifold (in this case, (Xred, gred) is a Hermitian manifold).

Kähler supermanifolds. A Kähler super form on X is a nondegenerate (1, 1)-form ω

such that dω = 0 and such that ωred is positive-definite. By nondegeneracy, we mean

that the stalk values ωp are nondegenerate bilinear pairings on the vector superspaces

TpX = TX,p for each p ∈ X. A Kähler supermanifold is a Hermitian supermanifold (X, g)

such that the 2-form ωg := i∂̄∂g is a Kähler super form.

Projective superspaces. Let V = V+ ⊕ V− be a complex supervector space with

dimCV+ = m + 1 and dimCV− = n. The projectivisation of V is the projective super-

– 7 –
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space PV = (PV+,∧•[V− ⊗ OPV+
(−1)]), viewed as a (split3) complex supermanifold. This

comes endowed with a holomorphic super line bundle H := O(1) called the hyperplane

bundle, whose powers we denote by O(k) := O(1)⊗k. The dual holomorphic superbun-

dle O(−1) = O(1)∗ is called the tautological super line bundle. A Z2-homogeneous basis

e0 . . . em+n of V (with e0 . . . em ∈ V+ and em+1 . . . en ∈ V−) determines supercoordinates

on the affine supermanifold AV associated with V , which in turn give a basis of the space of

global holomorphic supersections z0 . . . zm+n of O(1). The latter are the homogeneous su-

percoordinates of PV determined by the given homogeneous basis of V . The homogeneous

supercoordinate ring ⊕∞
k=0H

0(O(k)) (with multiplication given by the tensor product and

the Z2-grading induced from O(k)) is isomorphic as a C-superalgebra with the free super-

commutative superalgebra C[z0 . . . zm+n] generated by the homogeneous supercoordinates.

This algebra also has a Z-grading given by the degree of monomials in z0 . . . zm+n, and

the supervector space H0(O(k)) identifies with the component of degree k with respect to

this grading.

A superscalar product ( , ) on V makes PV into a Kähler supermanifold as follows.

Since the total space of O(−1) identifies with the affine supermanifold AV defined by V ,

the total space of O(1) identifies with the affine supermanifold AV ∗ defined by V ∗ and

thus carries the Hermitian metric induced by the superscalar product ( , )∗. The former

gives the Hermitian supermetric h on O(1). This determines a Kähler supermetric on PV ,

known as the Fubini-Study supermetric defined by ( , ), through the relation:

ω = i∂∂̄ lnh(z, z) , (2.10)

where the natural logarithm lnα of an element of the Grassmann algebra C[zm+1, . . . ,

zm+n] is defined through its power series, when α is invertible in this superalgebra.

When V = Cm+1|n endowed with its canonical superscalar product, then the projective

superspace PV is denoted by Pm|n and called the projective superspace of type (m|n).

This is isomorphic as a Hermitian supermanifold to the projective superspace over any

supervector space of dimension (m + 1|n).

2.4 Hodge supermanifolds and quantum super line bundles

Consider a connected compact complex supermanifoldX of dimension (m|n). By definition,

a polarization of X is a positive holomorphic super line bundle L over X. The following

Kodaira superembedding theorem was proved in [9]: Given a polarized Kähler supermanifold

(X,L), there exists a positive integer k0 such that the tensor powers Lk := L⊗k are very

ample for all k ≥ k0 in the sense that the super Kodaira map defined by any homogeneous

basis of the complex supervector space H0(Lk) is a superembedding of X in the projective

superspace P[H0(Lk)∗].

As in the case of ordinary manifolds, there is the natural concept of a Hodge superman-

ifold, providing a connection between Kähler and algebraic supergeometry [6]. A Kähler

form ω is called integral, if its cohomology class [ω] belongs to H2(X,Z). In this case,

3A supermanifold (X,A) is called split if the sheaf A is globally isomorphic to ∧n
Ared

Â (rather than

simply locally isomorphic).

– 8 –
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(X,ω) is called a Hodge supermanifold. It was shown by Kostant ([6], Prop. 4.10.2) that in

this case X admits a positive holomorphic super line bundle L endowed with a connection

∇ such that ω = i
2πF∇ where F∇ is the curvature of ∇ (in particular, we have [ω] = c1(L)).

A triplet (X,ω,L) of this type is called a polarized Hodge supermanifold.

Given a polarized Hodge supermanifold (X,L, ω), the super line bundle L carries a

Hermitian supermetric h which determines the connection ∇ as its Chern connection,

i.e. the unique connection of Dolbeault type (1, 0) compatible with h; in fact, h and ∇
essentially determine each other [8]. The quadruple (X,L, h, ω) is called a prequantized

Hodge supermanifold. Under the replacement L → Lk, we have an induced supermetric

hk = h⊗k on Lk and the corresponding Chern connection ∇k = ∇⊗k with curvature

F∇k
= k

2πiω. Fixing a measure µ on X yields a superscalar product on the vector super

space H0(Lk) [8]:

〈s1, s2〉µ,h
k :=

∫

X
dµ hk(s1, s2) . (2.11)

The standard choice for dµ is the super Liouville measure dµω defined by the

Kähler superform ω. On a super-coordinate chart U with local coordinates ZI =

z1, . . . , zm, ζ1, . . . , ζn, we have:

dµω|U := (2π)n|sdet(ωIJ)|dz1 ∧ dz̄1 ∧ . . . ∧ dzm ∧ dz̄midζ1dζ̄1 . . . idζndζ̄n , (2.12)

where ωIJ are the coefficients of the Kähler form ω = ωIJdZ
I ∧ dZ̄J and sdet(A) is

the superdeterminant (Berezinian) of the supermatrix A. However, it is is desirable to

work in a more general setting in order to include e.g. the case when X is algebraically a

Calabi-Yau supermanifold and µCY is the volume form determined by its the holomorphic

volume element.

Remark. As for ordinary manifolds, we can derive a local Kähler potential K from

the Hermitian bundle supermetric h. Given a global supersection σ of L, we let Kσ :=

− log h(σ, σ), which is a Kähler potential on the set Uσ := {x ∈ X|σ(x) ∈ O×
x } (here O×

x

is the supercommutative group of invertible elements in the local superalgebra Ox):

ω =
i

2π
∂∂̄Kσ =

1

2πi
log h(σ, σ) =

i

2π
F∇ . (2.13)

2.5 Parameterizing hermitian bundle supermetrics and polarized Kähler su-

per forms

Let us fix a polarized complex supermanifold (X,L), where L
π→ X is a positive holomor-

phic super line bundle on X. Since L has rank (1, 0), we have that Lres = Lred
πred→ Xred is

an ordinary holomorphic line bundle on the complex manifold Xred. We let L×
red

π×
red→ Xred be

the total space Lred with the zero supersection removed. A Hermitian supermetric h on L

is determined by the associated Hermitian C-sesquilinear maps hx : (Lred)x × (Lred)x → Cx

on the fibers of Lred at the points x of Xred. Hence h is uniquely determined by the global

supersection ĥ of (π×red)∗(C) given by:

ĥ(q) := h(q, q) ∈ Cπ×
red

(q) , q ∈ L×
red . (2.14)
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where C is the sheaf of smooth superfunctions on X, viewed as a sheaf of C-superalgebras

on Xred. Notice that the right hand side is invertible in the superalgebra Cπred(q). We have

ĥ(cq) = |c|2ĥ(q) for all q ∈ L×
red and all c ∈ C∗. The set Met(L) of Hermitian supermetrics

on L can be identified with the set of all such ĥ. If we fix a reference super metric h0 on

L, then any other supermetric h is described by the global supersection φ = ĥ
ĥ0

of C, which

is a smooth superfunction on X whose body (projection to C(X)) is a positive-definite

ordinary smooth function. We thus find that Met(L) can be identified with the real cone

C>0(X) of all such smooth superfunctions.

In this paper, we will use a slightly different parameterization when L is very ample.

For any q ∈ L×
red, we let q̂ : H0(L) → Oπ(q) be the C-linear functional (called evaluation

functional) defined through:

s(π(q)) = q̂(s)q , s ∈ H0(L) . (2.15)

We have the obvious property ĉq = 1
c q̂ for all non-vanishing complex numbers c. The very

ampleness of L implies q̂ 6= 0 for all q ∈ L×
red.

Consider a Hermitian superscalar product ( , ) on E := H0(L), where dimC(E) = (m+

1|n). Picking a homogeneous basis s0, . . . , sm+n of E with s0 . . . sm even and sm+1 . . . sm+n

odd, we let Gij = (si, sj) ∈ C. Also let Gij be the inverse of Gij , so that
∑m+n

j=0 GijGjk = δi
k.

Since the superscalar product is even, the matrix G is block-diagonal:

Giι = Gιi = 0 for i = 0 . . . m, ι = m+ 1 . . . m+ n .

The super-Hermitian property of ( , ) reads:

Gij = Gji i, j = 0 . . .m

Gιγ = −Gγι ι, γ = m+ 1 . . . m+ n .

Furthermore, the submatrix (Gij)i,j=0...m is positive-definite.

Let us fix a point q ∈ L×
red with π(q) = x. As explained in section 2.1., the pairing

( , ) induces a superscalar product ( , )∗ on the dual space H0(L)∗ = HomC(H0(L),C).

The latter extends uniquely to a Hermitian bilinear form (( , ))x on the Ox-module

HomC(H0(L),Ox) = H0(L)∗ ⊗C Ox. This allows us to consider the Hermitian super-

metric hB on L whose ‘square norm’ superfunction is given by (this is well-defined since

the denominator is invertible in the local algebra Ox):

ĥB(q) = ((q̂, q̂))x =
1

∑m+n
i,j=0G

ij q̂(si)q̂(sj)
∈ Ox , q ∈ L×

red, x = π(q) . (2.16)

This is called the Bergman supermetric on L defined by ( , ). Since we now have a reference

Hermitian supermetric on L, we can describe any other supermetric h via the superfunction:

ǫ :=
ĥ

ĥB

∈ C>0(X) , (2.17)

which we call the epsilon superfunction of h relative to ( , ):

h(q, q) = ǫ(π(q))hB(q, q) . (2.18)
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More explicitly, we have ǫ(x) =
∑m+n

i,j=0G
ijh(x)(si(x), sj(x)). Thus, Hermitian supermetrics

on L are parameterized by their relative epsilon superfunctions, once one fixes a superscalar

product on H0(L).

The relative epsilon superfunction defined above depends on h and on the superscalar

product chosen on H0(L) and is a generalization of the more familiar object considered

in [21–23]. To make contact with the latter, notice that fixing h gives a distinguished

choice of a superscalar product on H0(L), namely the L2 superscalar product 〈 , 〉 defined

by h and by the Liouville density of the associated super Kähler form ω. The epsilon

superfunction of h with respect to this superscalar product depends only on h (remember

that ω is determined by h), and will be called the absolute epsilon superfunction of h. The

latter generalizes the absolute epsilon function considered in [21–23].

The L-polarized Kähler supermetric on X determined by hB is called the Bergman

supermetric on X induced by ( , ). Its Kähler super form is denoted by ωB. The Kähler

super form ω determined by the Hermitian bundle supermetric (2.18) takes the form:

ω = ωB − i

2π
∂∂̄ log ǫ ,

so as expected we have ω = ωB iff the relative epsilon superfunction of h is constant.

Since ω determines h up to multiplication by a constant, it also determines the relative

epsilon superfunction of the latter up to the same ambiguity. We shall see below that

L-polarized Bergman supermetrics are those supermetrics induced on X by pulling-back

Fubini-Study supermetrics through the Kodaira superembedding i : X →֒ Pm|n (where

dimC(H0(L)) = (m + 1|n)) determined by the very ample super line bundle L, where

the Fubini-Study supermetric being pulled-back is determined by the superscalar product

on H0(L)∗.

Remark. The Hermitian superscalar product on H0(L) defined by hB and by the volume

form of ωB:

〈s, t〉 =

∫

X
dµωB

hB(s, t) (s, t ∈ H0(L))

need not coincide with the superscalar product ( , ) which parameterizes hB . If they

do, then one says that the superscalar product ( , ) and associated Bergman bundle and

manifold supermetrics hB , ωB are balanced [24, 25]. Clearly, for ωB to be balanced, the

absolute epsilon superfunction has to be constant.

2.6 Bergman supermetrics from metrized Kodaira superembeddings

Let X be a compact complex supermanifold. By the Kodaira superembedding theorem,

a positive super line bundle L on X gives a holomorphic superembedding i : X →֒ PV ,

where E := H0(L) and V = E∗ is the space of holomorphic supersections of L, whose

complex superdimension we denote by (m+ 1|n). The embedding allows us to view X as a

nonsingular projective supervariety in PV , whose homogeneous coordinate ring R(X,L) =

⊕k≥0H
0(Lk) is generated in monomial degree k = 1. In particular, L and the pull-back

i∗(H) of the hyperplane superbundle H := OPV (1) are isomorphic as holomorphic super

line bundles.
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Conversely, if we are given any smooth projective supervariety X in a projective su-

perspace PV whose vanishing ideal I(X) is generated in monomial degrees greater than

one, then the restriction OX(1) = OPV (1)|X is very ample and the embedding X →֒PV can

be viewed as the Kodaira superembedding determined by this restriction. The space of

holomorphic supersections of OX(1) identifies with the supervector space E = V ∗.

A metrized Kodaira embedding is a Kodaira superembedding determined by a very

ample super line bundle L on X together a fixed choice of a Hermitian superscalar product

( , ) on its space of holomorphic supersections E := H0(L). For such embeddings, the

superscalar product on E induces a superscalar product on V = E∗, which makes PV into

a (finite-dimensional) projective super Hermitian space. The later carries the Fubini-Study

supermetric4 determined by the superscalar product. Its Kähler super form is given by:

π∗(ωFS)(v) =
i

2π
∂∂̄ log[(v, v)∗] ,

where π : V → PV is the canonical projection while ( , )∗ is the superscalar product

induced on V = E∗. There exists a one to one correspondence between metrized Kodaira

superembeddings of X and holomorphic superembeddings in finite-dimensional projective

super Hermitian spaces such that the vanishing ideal of the superembedding is generated

in monomial degrees greater than one.

The Fubini-Study supermetric admits the hyperplane superbundle H as a quantum

line superbundle, when the latter is endowed with the Hermitian bundle supermetric hFS

induced from E. Since L ≃ i∗(H) as holomorphic super line bundles, the pull-back i∗(hFS)

defines a Hermitian supermetric hB on L. The latter coincides with the Bergman bundle

supermetric determined by ( , ). The pulled-back Kähler form ωB = i∗(ωFS) admits (L, hB)

as a quantum super line bundle, and coincides with the Bergman Kähler form determined

by ( , ). It follows that Bergman supermetrics on X coincide with pull-backs of Fubini-

Study supermetrics via metrized Kodaira embeddings.

Remark. A choice of homogeneous basis z0 . . . zm+n for E = V ∗ allows us to express

v ∈ V as: v =
∑m+n

i=0 viei, where (ei) is the homogeneous basis of V dual to (zi) and

vi = zi(v). This gives an identification of V with the supervector space Cm+1|n endowed

with the superscalar product given by 〈u, v〉 =
∑m+n

i,j=0G
ij ūivj , where the Gij are given as

above. Then PV identifies with Pm+1|n endowed with the Fubini-Study supermetric defined

by this superscalar product. It is customary to choose an orthonormal basis, in which case

the Fubini-Study supermetric takes the familiar form in homogeneous supercoordinates. In

this case, the freedom of choosing the superscalar product ( , ) is replaced by the freedom of

acting with PGLC(m+1|n) transformations on the homogeneous supercoordinates of Pm|n.

3 Generalized Berezin and Toeplitz quantization of supermanifolds

In this section, we extend the generalized Berezin and Toeplitz quantization procedure

of [10] to the case of Kähler supermanifolds. The subtle point of this extension is to

4Homogeneous Kähler supermetrics on PV are in bijection with super Hermitian scalar products on

E taken up to constant rescaling, and these are the Fubini-Study supermetrics. They are all related by

PGL(E)-transformations.
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control the various super Hermitian forms involved in defining the Rawnsley supercoher-

ent projectors.

In the following, let X be a Kähler supermanifold endowed with a fixed very ample

super line bundle L. We also fix a Hermitian superscalar product on the finite-dimensional

supervector space E = H0(L), whose dimension we denote by (m+ 1|n).

We will consider a homogeneous basis s0 . . . sm, sm+1 . . . sm+n of E, where s0 . . . sm

are even and sm+1 . . . sm+n are odd. We let G be the Hermitian matrix with entries

Gij := (si, sj) and Gij be the entries of the inverse matrix G−1. Any supersection s ∈ E

can be expanded as:

s =
m+n∑

i,j=0

Gij(sj , s)si .

As mentioned above, the matrix G is block-diagonal because the bilinear form ( , ) is even,

and the submatrix (Gij)i,j=0...m is positive-definite.

3.1 Supercoherent states

Recall that O(L) denotes the sheaf of holomorphic supersections of L. For any point x ∈ X,

the stalk Ox(L) of this sheaf at x is a free Ox-supermodule of rank (1|0). We let O×,ev
x (L)

be the set of even bases of this module, i.e. the set of even elements q ∈ Lx such that

Ox(L) = Oxq. We have O×,ev
x (L) = O×,ev

x q for any q ∈ (L×
red)x, where O×,ev

x is the set

of even invertible elements of Ox (this is a subgroup of the multiplicative monoid of the

superalgebra Ox).

Given q ∈ (L×
red)x and a supersection s ∈ E = H0(L), we have:

s(x) = q̂(s)q (3.1)

for some element q̂(s) ∈ Ox. This gives an even C-linear functional q̂ : E → Ox. Con-

sider the Ox-supermodule Ex := Ox ⊗C E. The superscalar product on E extends to a

nondegenerate and even Ox-sesquilinear map (( , ))x : Ex × Ex → Cx as follows:

((α ⊗ s, β ⊗ t))x = (−1)s̃β̃(ᾱβ) ⊗C (s, t) . (3.2)

where α, β ∈ Ox and s, t ∈ E. These extended even pairings make each Ex into a Hermitian

Ox-module.

By the Riesz theorem, we have a uniquely determined element eq ∈ Ex such that:

((eq , s))x = q̂(s) ∀s ∈ E , (3.3)

where we consider s ∈ E tensored with the identity 1Ox
in Ex. Direct computation gives

the explicit expression:

eq =
m+n∑

i,j=0

Gjiq̂(si) ⊗C sj ,

which implies:

((eq , eq))x =

m+n∑

i,j=0

Gij q̂(si)q̂(sj) ∈ Ox .
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Notice that eq cannot be the zero supersection, since that would imply that all supersections

of L (and thus of Lred) vanish at x, which is impossible since Lred is very ample. Also notice

that ((eq, eq))x belongs to (C>0)x ⊂ C×
x . Indeed, the fact that q̂ is an even map implies that

eq itself is even and we have:

evx(((eq , eq))x) =
m∑

i,j=0

Gijevx(q̂(si))evx(q̂(sj)) , (3.4)

which is positive since the restriction of ( , ) to E+ is positive-definite and because Lred is

very ample. The element eq of Ex will be called the Rawnsley supercoherent vector defined

by q. This generalizes the coherent vectors introduced in [21] to the supermanifold case.

If q′ is another element of (L×
red)x, then q′ = cq for some c ∈ C and we have eq′ = 1

c̄ eq.

It follows that the rank (1|0) Ox-module lx := 〈eq〉 = Oxeq ⊂ Ex depends only on the

point x ∈ X. This can be interpreted as follows. Let L̄ be the super line bundle obtained

by reversing the complex structure of all fibers; this is a holomorphic super line bundle

over the complex supermanifold X̄ obtained by reversing the complex structure of X. The

scaling property of supercoherent vectors implies that the element ex := q̄⊗C eq ∈ L̄x⊗CE

depends only on the point x ∈ X. The superscalar product on E extends to a sesquilinear

map (( , )) taking [L̄x ⊗C E] × [L̄y ⊗C E] into L̄x ⊗C L̄y. So in particular, the combination

K(x, y) = ((ex, ey)) defines a holomorphic supersection K of the external tensor product

L̄⊠ L̄ (which is a holomorphic super line bundle over the supermanifold X̄ × X̄). This will

be called the reproducing kernel of the finite-dimensional super Hermitian space (E, ( , )).

Rawnsley’s supercoherent projectors are the Ox-linear ’orthoprojectors’ Px ∈
EndOx

(Ex) on the rank one submodules lx ⊂ Ex:

Px(s) =
eq((eq , s))x

((eq , eq))x
∈ lx (s ∈ Ex) (3.5)

These are well-defined since ((eq, eq))x is an even invertible element of Cx. The projectors

depend only on L, on the point x ∈ X and on the superscalar product chosen on E. Given

a C-linear operator C ∈ End(E), its lower Berezin symbol is the smooth superfunction

σ(C) ∈ C(X) given by:

σ(C)(x) := str(CPx) =
((eq, Ceq))x

((eq , eq))x
. (3.6)

This gives a C-linear map σ : End(E) → C(X), whose image we denote by Σ. Notice

that σ and Σ depend only on L and on the superscalar product ( , ) chosen on E. The

obvious property:

σ(C†) = σ(C)

implies that Σ is closed under the complex conjugation of the superalgebra C(X), i.e. we

have Σ̄ = Σ. Also notice that Σ contains the constant unit function 1X = σ(idE) and that

σ is an even map:

σ̃(C) = C̃ , (3.7)

when C is a Z2-homogeneous operator in E. It follows that Σ is a Z2-homogeneous subspace

of C(X), i.e. Σ = Σ+ ⊕ Σ− with Σ± = Σ ∩ C(X)±.
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3.2 Generalized Berezin quantization

As for ordinary manifolds, the Berezin symbol map σ : End(E) → C(X) is injective so its

kernel is trivial. This is easily seen from expanding

((eq, Ceq))x =
∑

i,j,k,l

(Gjiq̂(si))
∗Gklq̂(sl)(sj , Csk) . (3.8)

As Px is independent of the choice of q for every x, we choose q to be (1, x) everywhere.

Also note that we can write C in the above equation as C =
∑

i,j |si)C
ij(sj|. Altogether

we thus obtain

((eq, Ceq))x =
∑

i,j

Cij s̄i(x)sj(x) . (3.9)

As the (si) form a (holomorphic) basis of E, it follows that if (3.9) equals zero then Cij = 0.

It follows that the corestriction σ|Σ : End(E) → Σ is an isomorphism of supervector

spaces and we can associate an operator on E to every superfunction f ∈ Σ via the Berezin

quantization map Q = (σ|Σ)−1 : Σ → End(E):

Q(f) := σ−1(f) ∀f ∈ Σ . (3.10)

The quantization map Q is even and depends only on L and on the choice of superscalar

product on H0(L). It satisfies the relations:

Q(f̄) = Q(f)† , Q(1X) = idE .

The Berezin superalgebra. The Berezin product ⋄ : Σ × Σ → Σ is defined via the

formula:

f ⋄ g := σ(Q(f)Q(g)) ⇔ Q(f ⋄ g) = Q(f)Q(g) . (3.11)

Together with the complex conjugation of smooth superfunctions f → f̄ , it makes Σ into a

unital finite-dimensional associative ∗-superalgebra (in particular, the conjugation of C(X)

restricts to an even involution of Σ). The Berezin quantization map gives an isomorphism

of ∗-superalgebras:

Q : (Σ, ⋄, )̄ → (End(E), ◦, †) .

Recall that (End(E), ◦, †) is a ∗-superalgebra with nondegenerate trace given by the usual

supertrace. It follows that the induced linear map (called the Berezin supertrace):

∫∫
f := str Q(f) (f ∈ Σ) (3.12)

is a nondegenerate supertrace on the Berezin superalgebra (Σ, ⋄, )̄:

∫∫
f̄ =

∫∫
f ,

∫∫
f ⋄ g = (−1)f̃ g̃

∫∫
g ⋄ f ,

∫∫
f ⋄ g = 0, ∀g ∈ Σ ⇒ f = 0 .
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The super Hermitian pairing on Σ (called the Berezin pairing) obtained by transporting

the super Hilbert-Schmidt pairing:

≺ f, g ≻B:= 〈Q(f), Q(g)〉HS = str
(
Q(f)†Q(g)

)
(3.13)

coincides with the pairing induced by the Berezin supertrace:

≺ f, g ≻B=

∫∫
f̄ ⋄ g .

Notice that ≺ 1X , 1X ≻B= 〈idE, idE〉HS = m − n + 1, where (m + 1|n) was the superdi-

mension of E.

The squared two point superfunction. For later reference, we define the superana-

logue of the squared two-point function of coherent states. For this, note that the Ox-

sesquilinear maps (( , ))x on Ex (see equation (3.2)), uniquely extend further to a pair-

ing (( , ))x,y : [Ox ⊗C E] × [Oy ⊗C E] → Ōx ⊗ Oy. Define the two-point superfunction

Ψ : X ×X 7→ Cx ⊗ Cy via:

Ψ(x, y) := str(PxPy) = σ(Px)(y) = σ(Py)(x) =
((ex, ey))x,y((ex, ey))x,y

((ex, ex))x((ey , ey))y
. (3.14)

As the supercoherent state projectors Px, Py are even operators on E, Ψ is symmetric

on X ×X:

Ψ(x, y) = Ψ(y, x) ∀x, y ∈ X

and vanishes at points (x, y) where the directions of the supercoherent vectors ex and ey
in E are orthogonal to each other with respect to the pairing (( , ))x,y.

3.3 Changing the superscalar product in generalized Berezin quantization

Any Hermitian superscalar product ( , )′ on E has the form:

(s, t)′ = (As, t) (3.15)

with A a ( , )-super Hermitian even invertible operator. Such an operator has the block

diagonal structure A = A+ ⊕A− (with A± ∈ GL(E±)) where A± are ( , )±-Hermitian and

A+ is positive definite. The supercoherent states with respect to the new product ( , )′,

which in turn induces the pairing (( , ))′x, are given by:

e′q = A−1eq (q ∈ L×
x ) , (3.16)

while the new supercoherent projectors take the form:

P ′
x =

1

σ(A−1)(x)
A−1Px (x ∈ X) . (3.17)

The symbol σ(A−1)(x) =
((eq |A−1|eq))x

((eq |eq))x
of A−1 computed with respect to (( , ))x and the

symbol σ′(A)(x) =
((e′q |A|e′q))

′
x

((e′q |e
′
q))′x

of A computed with respect to (( , ))′x are related by:

σ(A−1)(x) =
1

σ′(A)(x)
. (3.18)

– 16 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
5

As A+ is positive definite, the body of both σ(A) and σ′(A) is non-vanishing. Therefore,

both these superfunctions are invertible on X. Given an operator C, we have more gener-

ally:

σ′(C) =
σ(CA−1)

σ(A−1)
(3.19)

and:

σ(C) =
σ′(CA)

σ′(A)
. (3.20)

Since A is even, so are σ′(A) and σ(A−1). Therefore, the order of multiplication in the

fractions is irrelevant. Let Q′ be the Berezin quantization map defined by ( , )′ and Σ′ ⊂
C(X) be the image of σ′. Equation (3.19) shows that

Σ′ =
1

σ(A−1)
· Σ =

{
1

σ(A−1)
· f | f ∈ Σ

}

and that:

Q′(f) = Q(σ(A−1)f)A ∀f ∈ Σ′ .

As for ordinary manifolds, we have the following proposition, whose proof mimics that

of the corresponding result of [10]:

Proposition. The Berezin quantizations defined by two different superscalar products

on E agree iff A is proportional to the identity, i.e. iff the two superscalar products are

related by a constant scale factor λ ∈ C∗. In this case, the supercoherent states differ by

a constant homothety and the Rawnsley supercoherent projectors are equal.

3.4 Integral representations of the superscalar product

In the following, let L be a very ample super line bundle, E = H0(L) the vector space

of supersections and ( , ) a superscalar product on E. We will look for those superscalar

products ( , ) which admit integral representations through a measure µ and a Hermitian

supermetric h on L; such a representation is required for defining generalized Toeplitz

quantization.

A Hermitian bundle supermetric h on L can be parameterized by its epsilon super-

function relative to ( , ):

ǫ(x) := h(x)(q, q) ((eq, eq))x =
m+n∑

i,j=0

Gijh(x)(si(x), sj(x)) . (3.21)

Note that the right hand side is indeed independent of the choice of q. Furthermore,

h(x) is uniquely determined by h(q, q); conversely, the epsilon superfunction determines a

Hermitian supermetric via h(x)(q, q) = ǫ(x)
((eq ,eq))x

.

Let us look for integral representations of (s, t) of the following form:

(s, t) =

∫

X
dµ(x) h(x)(s(x), t(x)) .

Since the right hand side equals
∫
X dµ(x)ǫ(x)((s, Pxt))x we have:
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Proposition. The superscalar product ( , ) on E coincides with the L2 product induced

by (µ, h) iff the relative epsilon superfunction of the pair (h, ( , )) satisfies the identity
∫

X
dµ(x)ǫ(x)Px = idE , (3.22)

i.e. iff the supercoherent states defined by ( , ) form an ‘overcomplete set’ with respect to

the measure µǫ = µǫ.

The precise mathematical meaning of equation (3.22) is as follows. Recall that the

supercoherent projectors Px are Ox-linear operators acting in the free modules Ex = Ox⊗C

E, i.e. elements of the free Ox-module EndOx
(Ex) ∼= Ox ⊗C End(E). The map P which

associates the operator Px to every point of x (P (x) := Px) is a holomorphic supersection of

the trivial bundle X ×End(E), i.e. an element of the free O(X)-module O(X)⊗C End(E),

while its product with the epsilon superfunction is a smooth supersection of the same

bundle and thus an element of the free C(X)-module C(X)⊗C End(E). On the other hand,

integration of superfunctions over X with respect to µ gives an even C-linear map:
∫
dµ : C(X) → C ,

which extends uniquely to an even End(E)-linear map
(∫

dµ

)
⊗C idE : C(X) ⊗C End(E) → End(E) .

In equation (3.22) as well as below, this latter map is denoted simply by
∫
dµ. It follows

that condition (3.22) can be viewed as a spectral decomposition equation for the identity

operator of E with a superfunction-valued spectral measure, i.e. a spectral decomposition

taken over the C(X)-module C(X) ⊗C End(E).

Since the Berezin symbol map is injective, condition (3.22) is equivalent to the following

(super) Fredholm equation of the first kind:
∫

X
dµ(y)Ψ(x, y)ǫ(y) = 1 (x ∈ X) ,

where Ψ(x, y) is the squared two point superfunction (3.14).

When the superscalar product on E is fixed, equation (3.22) can be viewed as a con-

straint on those pairs (µ, h) which allow for an integral representation of this product.

Taking the supertrace, we find a normalization condition on the epsilon superfunction:
∫

X
dµ(x) ǫ(x) = m+ 1 − n ,

where the dimension of E is (m+ 1|n). More details on this formula for the case when ǫ is

constant, in particular when case m+ 1− n = 0, are found in section 4.4. Equation (3.22)

also allows us to establish a precise relationship between the supertrace on End(E) and

the integral over X:

str(C) =

∫

X
dµ(x) ǫ(x)σ(C)(x) . (3.23)
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Here σ is the Berezin symbol map defined by the superscalar product ( , ).

Choosing a basis si, i = 0,m+ n, of E, we can rewrite condition (3.22) as a system of

inhomogeneous linear integral equations for ǫ:

∫

X
dµ ǫ(x)

q̂(si)q̂(sj)∑m+n
i,j=0G

ij q̂(si)q̂(sj)
= Gij .

These equations, of which a subset are independent, admit an infinity of solutions for

the epsilon superfunction, so there is an infinity of Hermitian supermetrics h on L which

allow us to represent a given superscalar product ( , ) as an integral with respect to µǫ.

Note that any such integral representation allows one to extend the superscalar product

( , ) to a Hermitian (but possibly degenerate) pairing on the space Γ(L) of smooth global

supersections of L.

The relative balance condition. The notion of balanced metric (see [24]) can be ex-

tended to the case of supermanifolds, as done e.g. in [25]: We say that a superscalar

product on E is µ-balanced if equation (3.22) admits a constant solution ǫ = m+1−n
µ(X) , i.e. if

the following condition is satisfied:

∫

X
dµ(x)Px ∼ idE ⇔

∫

X
dµ

q̂(si)q̂(sj)∑m+n
i,j=0G

ij q̂(si)q̂(sj)
∼ Gij .

Fixing the proportionality constant can be sometimes subtle, because for some choices

of measure µ one can have µ(X) = 0. For example, the latter phenomenon occurs for

some Hodge supermanifolds with respect to the super-Liouville measure determined by

their Kähler form, see e.g. the discussion of the normalization of the Liouville measure in

section 4.4.

Let ωh be the L-polarized Kähler form on X determined by a Hermitian superscalar

product h on L, and let µh := µωh
be the Liouville measure on X defined by ωh. We

say that ( , ) is balanced if it is µh-balanced. This is the case considered in [24, 26] as

mentioned in section 2.4.

Remarks. It should be stressed that, contrary to the case of ordinary Rawnsley super-

coherent states, the supercoherent states eq do not form an overcomplete basis for E in the

classical sense, because the spectral decomposition in that equation is not over E but over

the auxiliary module C(X)⊗C End(E). In fact, Px do not even act on the space E, but on

the associated supermodules Ex !

Note also that we have considered a number of different Hermitian pairings on the

space C(X) of smooth superfunctions defined on X. First, we have the L2 pairing with

defined by the measure µ:

≺ f, g ≻:=

∫

X
dµf̄g . (3.24)

Then, we have the L2 pairing defind by the measure µǫ = µǫ:

≺ f, g ≻ǫ=

∫
dµ ǫf̄g . (3.25)
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Finally, the Berezin symbol space Σ ⊂ C(X) carries the Berezin superscalar product:

≺ f, g ≻B=

∫∫
f̄ ⋄ g = 〈Q(f), Q(g)〉HS =

∫

X
dµ(x)ǫ(x)(f̄ ⋄ g)(x) . (3.26)

3.5 Generalized Toeplitz quantization

Let us now consider the case in which the superscalar product ( , ) on E = H0(L) is

determined by a measure µ on X and a Hermitian form h on L. Since the L2 Hermitian

pairing induced by (µ, h) on Γ(L) need not be nondegenerate or positive-definite, we cannot

use orthogonal projectors from that space onto the subspace E = H0(L) of holomorphic

supersections. Instead, we return to the definition of Rawnsley supercoherent projectors,

which we extend as follows. For every x ∈ X, consider the Cx-supermodule Γx := Cx ⊗CE,

which contains Ex = Ox ⊗C E as a sub-supermodule via the inclusion Ox ⊂ Cx. As in

section 3.1., we consider the unique sesquilinear extension of the super Hermitian form ( , )

from E to the supermodule Γx. This is given again by eq. (3.2), where now α, β belong to

Cx, and we again denote the extended form by (( , ))x. This non-degenerate Hermitian form

makes Γx into a Hermitian supermodule, and we can define the extended supercoherent

projector Πx ∈ EndCx
(Γx) by copying equation (3.5):

Πx(s) =
eq((eq , s))x

((eq, eq))x
∈ lx (s ∈ Γx) . (3.27)

These extended projectors are even and Cx-linear, and their restriction to the sub-

supermodule Ex recover Rawnsley’s projectors:

Πx|Ex = Px

Copying equation (3.22), we define an C(X)-linear even operator Π on the C(X)-

supermodule Γ(E) via:

Π :=

∫

X
dµ(x)ǫ(x)Πx . (3.28)

Then it is easy to check that Π is an idempotent operator, i.e. Π2 = Π and that im Π = E.

We are now ready to consider Toeplitz quantization. For every smooth superfunction

f ∈ C(X), define the corresponding Toeplitz operator Tf := T (f) ∈ End(E) by:

T (f)(s) = Π(fs) ∀s ∈ E . (3.29)

Using (3.28), this gives:

T (f) =

∫

X
dµ(x)ǫ(x)f(x)Px . (3.30)

The underlying map T : C(X) → End(E) will be called the generalized Toeplitz quantiza-

tion of (L,µ, h). As for ordinary manifolds, it satisfies:

T (f̄) = T (f)† and T (1X) = idE . (3.31)

Contrary to Berezin quantization, which depends only on the superscalar product ( , ) on E,

T (f) depends essentially on the measure µǫ, which is only constrained by the completeness

relation (3.22).
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3.6 Relation between generalized Berezin and Toeplitz quantization

For ordinary manifolds, the generalized Berezin quantization Q := σ−1 with respect to the

superscalar product ( , ) on E and the generalized Toeplitz quantization T with respect to

an integral representation (L, h, µ) of this superscalar product are linked via the generalized

Berezin transform. The same holds in the case of supermanifolds, as we will show. The map:

β := σ ◦ T , (3.32)

where σ is the Berezin symbol map and T is the Toeplitz quantization map, is called the

generalized Berezin transform and we have the integral representation:

β(f)(x) =

∫

X
dµ(y) ǫ(y)Ψ(x, y)f(y) , (3.33)

where Ψ is the squared two-point superfunction (3.14). We now have T (f) = Q(β(f)) and,

after restricting to Σ, we find the commutative diagram of bijections:

Σ
T |Σ−→ End(E)

β|Σ ↓ ‖
Σ

Q−→ End(E)

where β and T depend on the measure µǫ but Q and Σ depend only on the superscalar

product ( , ). Altogether, Toeplitz quantizations associated with different integral repre-

sentations of the superscalar product ( , ) on E give different integral descriptions of the

Berezin quantization Q defined by this product. Each Toeplitz quantization is equivalent

with Q via the corresponding Berezin transform.

Remarks. Let 〈 , 〉HS be the Hilbert-Schmidt pairing on End(E) and ≺ , ≻µǫ be the

natural super Hermitian pairing on C(X) induced by the measure µǫ. As for ordinary

manifolds [10], we have

〈T (f), C〉HS = tr(T (f)†C) = tr(T (f̄)C) =

∫

X
dµ(x)ǫ(x)f̄ (x)σ(C) =≺ f, σ(C) ≻µǫ ,

which shows that T and σ are adjoint to each other. It follows immediately that T is

surjective, since σ is injective and the Berezin transform is a super Hermitian operator

with image Σ.

3.7 Changing the superscalar product in generalized Toeplitz quantization

Let us now analyze what happens when we change the superscalar product ( , ) on E to

( , )′ with (s, t)′ := (As, t). Equations (3.17) and (3.22) give:
∫

X
dµ(x)ǫ(x)σ(A−1)(x)P ′

x = A−1 , (3.34)

Using relations (3.15), (3.16) and (3.21) we find that the epsilon superfunction of the pair

(h, ( , )′) is given by:

ǫ′(x) = ǫ(x)σ(A−1) , (3.35)
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so (3.34) takes the form: ∫

X
dµ(x)ǫ′(x)P ′

x = A−1 .

We can define a new Toeplitz quantization map according to:

T ′(f) :=

∫

X
dµ(x)ǫ′(x)f(x)P ′

x ,

which satisfies T ′(f)⊕ = T (f̄) as well as:

tr(AT ′(f)) =

∫

X
dµ(x)ǫ(x)f(x) = tr(T (f))

and:

T ′(1X) = A−1 .

As on ordinary manifolds, a modified Berezin transform connects generalized Berezin and

Toeplitz quantizations with respect to the superscalar product ( , )′, cf. [10].

3.8 Extension to powers of L

The constructions of this supersection can be extended straightforwardly by replacing the

very ample super line bundle L with any of its positive powers L⊗k, k ≥ 1. The new

Hermitian superscalar product ( , )k on the supervector spaces Ek := H0(Lk) yields new

supercoherent states e
(k)
x ∈ Ek and the associated Rawnsley projectors P

(k)
x . The latter in

turn define injective Berezin symbol maps σk : End(Ek) → C(X) whose images we denote

by Σk; the inverse of σk after corestriction to Σk is again denoted by Qk. Note that the

construction depends essentially on the sequence ( , )k chosen on the spaces Ek.

4 Special cases: Berezin, Toeplitz and Berezin-Bergman quantization

In this section, we first discuss the classical Berezin and Toeplitz quantization of Hodge

supermanifolds using the natural supermetric associated to the Kähler polarization. After

this general discussion, we give the quantizations of affine and projective complex super-

spaces. Not surprisingly, this is quite similar to the case of ordinary Hodge manifolds [10].

We also give a brief discussion of the superanalogue of Berezin-Bergman quantization.

4.1 Classical Berezin and Toeplitz quantization

Given a prequantized Hodge supermanifold (X,ω,L, h), we fix an integer k0 > 0 such that

Lk0 is very ample. For every integer k ≥ k0, endow Lk with the Hermitian supermetric

hk := h⊗k and consider Ek := H0(Lk) together with the L2-scalar product obtained from

hk and the Liouville measure µω.

With these choices, the generalized quantization procedure yields a bijective symbol

map σk : End(Ek) → Σk ⊂ C(X) and its inverse, the quantization map Qk : Σk → End(Ek).

Moreover, we have the surjective Toeplitz quantization map Tk : C(X) → End(Ek). Both

– 22 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
5

are linked by the surjective Berezin transform βk = σk ◦ Tk : C(X) → Σk via Tk = Qk ◦ βk.

Altogether, we have the commutative diagram of bijections:

Σk
Tk|Σ−→ End(Ek)

βk|Σ ↓ ‖
Σk

Qk−→ End(Ek)

4.2 Relations with deformation quantization and geometric quantization

For ordinary Hodge manifolds, it is possible to show that Toeplitz quantization gives rise

to a formal star product leading to deformation quantizations, see [27–29]. Introducing

a formal Berezin transform, one can also introduce a corresponding Berezin star product.

It should be possible to extend these results to the case of Hodge supermanifolds. For

previous work on the deformation quantization of supermanifolds, see [30] in the cases of

U1|1 and Cm|n via a super-analogue of Toeplitz operators and [31] for split supermanifolds

via a Fedosov-type procedure.

As on ordinary manifolds [5, 7], one can define a geometric quantization of a Hodge

supermanifold. The prequantization procedure goes back to [6]; a (real) polarization in this

context was introduced in [8]. In the case of ordinary manifolds, there is a clear relation

between the geometric quantization of quantizable Hermitian symmetric spaces and the

Toeplitz quantization procedure as shown in [16]. A similar relationship can be expected

for Hodge supermanifolds.

As both these points would take us too far away from the main direction of this work,

we refrain from going into more detail.

The Berezin product or supercoherent state star product. The operator product

⋄k : Σk × Σk → Σk introduced in section 3.2,

f ⋄k g := σk(Qk(f)Qk(g)) , f, g ∈ Σk , (4.1)

is also called the supercoherent state star product, since σk(C) = tr(CP
(k)
x ) is determined by

the supercoherent states. It is associative by definition and (Σk, ⋄k, )̄ is isomorphic as a ∗-

superalgebra to (End(Ek), ◦, †), an isomorphism being provided by the Berezin quantization

map Qk. As for ordinary manifolds, this is not a formal star product, cf. [10].

As an example, consider the Berezin quantization of (Pm|n, ωFS) with the prequantum

super line bundle Hk, where H is again the hyperplane superbundle. If we normalize the

homogeneous coordinates (ZI) = (zi, ζι) = (z0, . . . , zm, ζ1, . . . , ζn) on Pm|n by demanding

that |Z| = 1, we obtain the particularly simple form [13]:

f ⋄k g =
∑

I1,...,Ik

(
1

k!

∂

∂ZI1
. . .

∂

∂ZIk
f

)(
1

k!

∂

∂Z̄I1
. . .

∂

∂Z̄Ik
g

)
.

Using the embedding Pm|n →֒Rm2+n2−1|2mn, one can rewrite this Berezin product as a finite

sum of real differential operators, resembling the first terms in an expansion of a formal

star product, see e.g. [32].
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4.3 The quantization of complex affine superspaces

As one might expect, the Bargmann construction for the quantization of affine space can

be extended to the case of affine superspace. Again, we have to replace the space of

holomorphic supersections of the quantum super line bundle with the space of supersections

which are square integrable with respect to a weighted version of the Liouville measure.

Consider a complex supervector space V = V0⊕V1 of dimension (m|n) over C. While V

itself is not a supermanifold, we have the associated supermanifold AV := (V0,OV0
⊗∧•V1)

cf. e.g. [33], and in our case Cm|n := AV = (Cm,OCm [ζ1, . . . , ζn]). The structure sheaf of

AV is freely generated by m even and n odd generators ZI = (z1, . . . , zm, ζ1, . . . , ζn). We

denote by B the algebra of polynomials in these generators, and for any f ∈ B we write

f =
∑

|p|=bounded

apχp , (4.2)

where |p| =
∑m+n

i=1 pi, pi ∈ N for 1 ≤ i ≤ m and pi ∈ {0, 1} for m + 1 ≤ i ≤ n. The

monomials χp are defined as

χp := Zp := (z1)p1 . . . (zm)pm(ζ1)pm+1 . . . (ζn)pm+n . (4.3)

As mentioned in section 2.2, this space comes with the standard flat Hermitian supermetric

whose Kähler form is

ω =
i

2π

(
m∑

i=1

dzi ∧ dz̄i − i

n∑

ι=1

dζι ∧ dζ̄ι

)

= ωIL dz
I ∧ dzL (4.4)

and an associated Liouville measure which is given by the integral form5

dµ(Z) :=
1

(2π)n
|sdet (ωIL)|dz1 ∧ dz̄1 ∧ . . . ∧ dzm ∧ dz̄midζ1dζ̄1 . . . idζndζ̄n

=
1

(2π)m
dz1 ∧ dz̄1 ∧ . . . ∧ dzm ∧ dz̄midζ1dζ̄1 . . . idζndζ̄n .

(4.5)

The Kähler form is polarized with respect to the trivial super line bundle O := AV ×C.

To obtain a quantum super line bundle, we endow O with the Hermitian supermetric h

given by

ĥ(Z) := e−|Z|2 , |Z|2 =

m∑

i=1

z̄izi + i

n∑

ι=1

ζ̄ιζι , (4.6)

which corresponds to the Kähler potential K(Z) := − log ĥ(Z) = |Z|2. We thus have a

corresponding L2-scalar product

〈f, g〉B :=

∫Cm|n

dµ(Z)e−|Z|2 f̄(Z)g(Z) (4.7)

with the normalization 〈s0, s0〉 = 1, where s0 = 1 is the unit constant superfunction

on Cm|n. We identify now the Bargmann space B(Cm|n) with the space of square inte-

grable holomorphic supersections of O (which contains B as a dense subset). This space

5Note that here and in the following f(Z) specifies an arbitrary complex superfunction, not necessarily

holomorphic in the ZI . In physicists’ notation, one would write f(Z, Z̄).
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carries a representation of the Heisenberg superalgebra with m even and n odd pairs of

creation/annihilation operators:

(â†if)(Z) := zif(Z) , (âif)(Z) :=
∂

∂zi
f(Z) ,

(α̂†
ιf)(Z) := ζιf(Z) , (α̂ιf)(Z) :=

∂

∂ζι
f(Z) ,

(4.8)

or, summarizing them according to (ÂI) = (âi, α̂ι):

(Â†
If)(Z) := ZIf(Z) , (ÂIf)(Z) :=

∂

∂ZI
f(Z) .

These operators satisfy the commutation relations6

[âi, â
†
j ] := [âi, â

†
j ]− = δij , {α̂ι, α̂

†
γ} := [α̂ι, α̂

†
γ ]+ = iδιγ , (4.9)

or, using the supercommutator {[ , ]}:

{[ÂI , Â
†
J ]} = iĨ J̃δIJ . (4.10)

We normalize the vacuum vector in B(Cm|n) to the constant unit function |0〉 := 1, and

setting 〈0|0〉B = 1 yields together with the commutation relations (4.9) a Hermitian super-

scalar product 〈 | 〉B on B. The normalized occupation vectors are given by:

|p〉 =
1√
p!
χp =

(Â†)p√
p!

|0〉 with ||χp||2B = (i)(
Pn

ι=1 pι)mod 2p! = (i)
f|p〉p! , (4.11)

where p! := p0! . . . pn!. Defining the number operators N̂I := (−i)Ĩ Â†
IÂI , we have N̂I |p〉 =

pI |p〉. The total number operator

N̂ :=
m+n∑

I=1

N̂I =
m∑

i=1

â†i âi − i
n∑

ι=1

α̂†
ι α̂ι (4.12)

allows us to introduce the decomposition B := ⊕∞
k=0Bk with Bk = ker(N̂ − k).

We define the supercoherent vectors with respect to q = s0(z) = 1 ∈ Oz and this

definition yields the usual super Glauber vectors:

|Z〉 = e
Pm+n

I=1
iĨ Z̄IÂ†

I |0〉 = e
Pm

i=1 z̄iâ†
i +i

Pn
ι=1 ζ̄ια̂†

ι |0〉 ,

|Z〉 =
∑

p

(i)
f|p〉 Z̄

p

√
p!

|p〉 ,

ÂI |Z〉 = Z̄I |Z〉 ,

〈Z1|Z2〉B = e(Z2,Z1) ,

(4.13)

6The factor of i is necessary to match our conventions for complex conjugation of objects of odd parity:

(α̂αα̂β)† = −α̂
†
βα̂†

α.
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where Z̄p = z̄p1

1 . . . z̄pm
n ζ̄

pm+1

1 . . . ζ̄
pm+n
n and (Z1, Z2) :=

∑m
i=1 z̄

i
1z

i
2 + i

∑n
ι=1 ζ̄

ι
1ζ

ι
2 denotes the

superscalar product on Cm|n. We have as usual

f(Z) = 〈Z|f〉B for f ∈ B .

The reproducing kernel is the super Bergman kernel:

KB(Z1, Z2) =
〈Z1|Z2〉√

〈Z1|Z1〉〈Z2|Z2〉
= e−

1

2
(|Z1|2+|Z2|2)+(Z2,Z1) . (4.14)

The Rawnsley projector is given by

PZ =
1

〈Z|Z〉B
|Z〉〈Z|B = e−|Z|2|Z〉〈Z|B (4.15)

with constant epsilon superfunction ǫ
Cm|n(Z) = ĥ(Z)〈Z|Z〉B = 1 and decomposition of the

identity
∫Cm|n dµ(Z)PZ = 1B .

Toeplitz quantization of AV . The Toeplitz quantization of f ∈ C(Cm|n) is given by:

T (f) =

∫Cm|n

dµ(Z)f(Z)PZ =

∫Cm|n

dµ(Z)e−|Z|2f(Z)|Z〉〈Z|B . (4.16)

In particular, we have T (ZI) = Â†
I and T (Z̄I) = ÂI . When f is a polynomial in Z and

Z̄, (4.16) obviously reduces to the anti-Wick prescription:

T (f(Z, Z̄)) =
...f(Â†, Â)

... ,

where the triple dots indicate antinormal ordering. In this case, T is not surjective due to

the infinite-dimensionality of the Bargmann space.

Berezin quantization of AV . The Berezin symbol map is easily extended as well. It is

defined on the algebra L(B) of bounded operators in the Bargmann space and maps them

into C(Cm|n) as follows:

σ(C)(Z) = e−|Z|2〈Z|C|Z〉B .

The Berezin transform β(f) = σ ◦ T is given by:

β(f)(Z1) =

∫Cm|n
dµ(Z2)f(Z2)e−|Z1−Z2|2 .

The symbol map gives rise to the Berezin quantization map Q : Σ → L(B), where

Σ ⊂ C(Cm|n) is the image of σ. We have Q(ZI) = Â†
I and Q(Z̄I) = ÂI . For a polynomial

superfunction f(Z, Z̄), we find:

Q(f) =: f(Â†, Â) : ,

where the double dots indicate normal ordering. Hence both quantization prescriptions

send ZI into Â†
I and Z̄I into ÂI , but Toeplitz quantization corresponds to anti-Wick

ordering, while Berezin quantization corresponds to Wick ordering.
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Restricted supercoherent vectors. For later use, consider the expansion of Glau-

ber’s supercoherent vectors |Z〉 in components |Z, k〉 of fixed total particle number k, i.e.

N̂ |Z, k〉 = k:

|Z〉 =
∞∑

k=0

|Z, k〉 , |Z, k〉 :=
1

k!

(
m∑

i=1

z̄iâ†i + i
n∑

ι=1

ζ̄ια̂†
ι

)k

|0〉 .

We note for future reference that 〈Z, k|Z, k〉B = 1
k! |Z|2k and ÂI |Z, k〉 = Z̄I |Z, k− 1〉. Note

furthermore that |λZ, k〉 = λ̄k|Z, k〉 for any λ ∈ C, and therefore the ray C∗|Z, k〉 depends

only on the image [Z] of Z in the projective superspace Pm−1|n.

4.4 The quantization of complex projective superspaces

It is now easy to carry out the quantization of complex projective superspaces. For earlier

discussions of these spaces relying on group theoretic methods, see [13, 34]. Another

possible approach would be to extend the techniques of [35, 36] to the supercase.

Consider the supermanifold Pm|n as introduced in section 2.2 with homogeneous su-

percoordinates ZI = (z0, . . . , zm, ζ1, . . . , ζn). As a quantum super line bundle, we take

the super hyperplane bundle H := O(1), which is very ample. The space of supersections

H0(Hk) is the space of homogeneous polynomials of degree k and can thus be identi-

fied with Bk ∈ B, where B is the Bargmann space used in the quantization of Cm+1|n.

Notice that:

dimBk = (b0k|b1k) ,

b0k =

[min{k,n}/2]∑

i=0

(m+ 1 + (k − 2i))!

(m+ 1)!(k − 2i)!

n!

(n− 2i)!(2i)!
,

b1k =

[(min{k,n}−1)/2]∑

i=0

(m+ 1 + (k − (2i + 1))!

(m+ 1)!(k − (2i+ 1))!

n!

(n− (2i+ 1))!(2i + 1)!
,

(4.17)

where b0k and b1k are the even and odd dimensions of Bk, respectively, and [. . .] denotes

taking the integral part. The first factor in the sums corresponds to the symmetrized even

homogeneous coordinates zi, while the second factor represents the antisymmetrized odd

homogeneous coordinates ζι.

We endow the hyperplane superbundle H with the Hermitian supermetric given by

hFS([Z])(ZI , ZI) =
|ZI |2
|Z|2 , (4.18)

which is associated to the following Kähler supermetric on Pm|n:

ωFS([Z]) =
i

2π
∂∂̄ log |Z|2 =

i

2π
∂∂̄ log(1 + |Z0|2) , (4.19)

cf. section 2.2. Let us be more explicit and restrict to the patch U0 for which z0 6= 0 with

local coordinates (ZI
0 ) = (zi

0, ζ
ι
0), I = 1, . . . ,m + n, where zi

0 = zi

z0 and ζι
0 = ζι

z0 . On this

patch, the Kähler form reads as

ωFS|U0
= ωIL dZ

I
0 ∧ dZL

0 (4.20)
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with

ωIL =

(
ωil ωiλ

ωιl ωιλ

)
=

i

2π(1 + |Z0|2)2

(
δil(1 + |Z0|2) − z̄i

0z
l
0 −iz̄i

0ζ
λ
0

−iζ̄ι
0z

l
0 iδιλ(1 + |Z0|2) − ζ̄ι

0ζ
λ
0

)
.

The corresponding Liouville measure dµ(Z) is given in the coordinates on the patch U0 as

(2π)n|sdet (ωIL)|dz1
0 ∧ dz̄1

0 ∧ . . . ∧ dzm
0 ∧ dz̄m

0 idζ1
0dζ̄

1
0 . . . idζ

n
0 dζ̄

n
0 , (4.21)

where

|sdet (ωIL)| :=
det((ωil) − (ωiλ)(ωιλ)−1(ωιl))

det(ωιλ)
= (2π)n−m(1 + |Z0|2)n−m−1 . (4.22)

Note that the volume of Pm|n vanishes, if (n−m−1) ≥ 0 because of the Berezin integration

in the measure. Otherwise, we can use the formula

1

(1 +
∑

i z̄
i
0z

i
0 + i

∑
ι ζ̄

ι
0ζ

ι
0)g

=

n∑

ℓ=0

(−1)ℓ (g − 1 + ℓ)!

(g − 1)!ℓ!

1

(1 +
∑

i z̄
i
0z

i
0)g+ℓ

(

i
∑

ι

ζ̄ι
0ζ

ι
0

)ℓ

(4.23)

and arrived at the closed expression

volωFS
(Pm|n) =

1

m!

m!

(m− n)!
, (4.24)

and in particular, we have volωFS
(Pm|0) = 1

m! .

The supermetric on the hyperplane superbundle H extends to the tensor product

supermetric hk
FS := h⊗k

FS , which satisfies:

hk
FS([Z])(S([Z]), S([Z])) =

|s(Z)|2
|Z|2k

(4.25)

for all supersections S ∈ H0(Hk) and their corresponding s ∈ Bk. The space H0(Hk) ∼= Bk

carries the associated L2-product:

〈s1, s2〉k := 〈S1, S2〉h
k
FS

k =

∫

Pm|n

dµ(z) hk
FS(S1, S2) . (4.26)

Note that the monomials χp with |p| = k provide an orthogonal but not orthonormal

basis of Bk with respect to the superscalar product (4.26). Using formula (4.23), we easily

verify that

〈s, t〉k =
1

(m− n+ k)!
〈s, t〉B ∀s, t ∈ Bk . (4.27)

The quantization of Pm|n proceeds now in a straightforward manner. The superco-

herent states of the quantum super line bundle Hk are the Glauber supercoherent states

restricted at level k and from these, we construct the supercoherent projectors

P
(k)
[Z] :=

|Z, k〉〈Z, k|B
〈Z, k|Z, k〉B

. (4.28)
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The overcompleteness relation takes the form

(b0k − b1k)

∫

Pm|n
dµ([Z])P

(k)
[Z] = vol(Pm|n)Pk , (4.29)

where Pk is the orthoprojector on Bk in B(Cm|n). The normalization is obtained by

taking the supertrace of both sides. Note that interestingly whenever m < n and thus

vol(Pm|n) = 0, we also have b0k − b1k = 0 for k > 0 as one can show e.g. by complete

induction. Therefore, this normalization condition does not give any additional constraint

in these cases. Alternatively, we can calculate the ordinary trace. While strP
(k)
[Z] = 1 and

strPk = bk0 − bk1 , we have

tr (P
(k)
[Z] ) =

(∑m
i=0 z̄

izi − i
∑n

ι=1 ζ̄
ιζι

∑m
i=0 z̄

izi + i
∑n

ι=1 ζ̄
ιζι

)k

, trPk = bk0 + bk1 . (4.30)

The expression

voltr(P
m|n) :=

∫

Pm|n

dµ([Z])

(∑m
i=0 z̄

izi − i
∑n

ι=1 ζ̄
ιζι

∑m
i=0 z̄

izi + i
∑n

ι=1 ζ̄
ιζι

)k

(4.31)

is clearly non-vanishing and can easily be evaluated in every concrete case. Our new

normalization of the overcompleteness relation (4.29) now reads as

b0k + b1k
voltr(Pm|n)

∫

Pm|n

dµ([Z])P
(k)
[Z] = Pk . (4.32)

We will restrict ourselves to superfunctions on Pm|n of the form:

fIJ ([Z]) :=
Z̄IZJ

|Z|2k
:=

(z̄0)I0 . . . (ζ̄n)Im+n(z0)J0 . . . (ζn)Jm+n

|Z|2k
, (4.33)

fIJ [z] ∈ C(Pm|n), where I = (I0 . . . Im+n),J = (J0 . . .Jm+n) with IL,JL ∈ N for L ≤ m

and IL,JL ∈ {0, 1} for L > m and |I| = |J | = k and where we set fIJ = 1 for m = n = 0.

Furthermore, we can decompose S(Pm|n) into the subsets Sk(Pm|n), which are spanned

by the superfunctions fIJ with |I| = |J | = k; note that S0(Pm|n) = C. For any L =

0 . . . m+ n, let ∆L ∈ Nm+n+1 be given by ∆L(I) = δIL. The obvious relation:

fIJ =
m+n∑

L=0

fI+∆L,J+∆L

shows that Sk(Pm|n) ⊂ Sk+1(Pm|n) for all k ≥ 0, so that S(Pm|n) = ∪∞
k=0Sk(Pm|n) is a

filtered ∗-algebra generated by the elements fIJ = Z̄IZJ

|Z|2
∈ S1(Pm|n).

Note that the space S(Pm|n) forms a good approximation to C∞(Pm|n): Since Pm|n is

a split supermanifold, any superfunction f ∈ C(Pm|n) allows for a globally valid expansion

of the form

f(Z) =
∑

|A|+|C|=|B|+|D|

fABCD(z)
ζAζ̄BzC z̄D

|Z||A|+|B|+|C|+|D|
(4.34)
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with multi-indices A,B and coefficient superfunctions fABCD(z) ∈ C(Pm|0); the latter are

well approximated, as S(Pm|0), which is contained in S(Pm|n), is dense in (C∞(Pm), || ||∞).

The latter is true due to the Stone-Weierstraß theorem, cf. [10]. To define an orthoprojec-

tor πk onto Sk(Pm|n), we cannot rely on an L2-scalar product on Pm|n. We can, however,

project each coefficient superfunction fABCD with k − |A| − |C| ≤ 0 onto Sk−|A|−|C|(P
m|0)

using the ordinary L2-orthoprojector on C∞(Pm) and plug these back into the expan-

sion (4.34). This clearly yields an element of Sk(Pm|n).

Toeplitz quantization of Pm|n. We define the Toeplitz quantization map Tk :

C∞(Pm|n,C) → End (Bk) according to

Tk(f) =
b0k + b1k

voltr(Pm|n)

∫

Pm|n
dµ([Z])f([Z])P

(k)
[Z] . (4.35)

Due to ÂI |Z, k〉 = Z̄I |Z, k − 1〉, we find:

Tk(fIJ ) =
b0k + b1k

voltr(Pm|n)

∫

Pm|n

dµ([Z])
ÂI |Z, k + d〉〈Z, k + d|B(Â†)J

|Z|2(k+m)

=
b0k + b1k

voltr(Pm|n)
ÂIPk+m(Â†)J ,

(4.36)

and thus the map Tk(f) is surjective. As a special case, we have:

Tk(fIJ) =
b01 + b11

voltr(Pm|n)
ÂI Â

†
J .

Berezin quantization of Pm|n. The Berezin symbol map σk : End(Bk) → C∞(Pm|n, C)

takes the form:

σk(C)([Z]) =
〈Z, k|C|Z, k〉
〈Z, k|Z, k〉 ∀C ∈ End(Bk) .

This map is injective, and we can define an inverse on Σk := imσk which yields the Berezin

quantization map Qk : Σk(Pm|n) → End(Bk), which is a linear isomorphism. Under

quantization, the superfunctions (4.33) are mapped to:

Qk(fIJ ) =
1

k!
Pk(Â†)IÂJPk ,

and we have in particular:

Qk(fIJ) = Â†
J ÂI .

Notice that the operators f̂IJ = Pk(Â†)IÂJPk with |I| = |J | = k provide a basis

for End(Bk), and thus the image Σk(Pm|n) can be identified with Sk(Pm|n). Therefore,

Σk(Pm|n) provides a weakly exhaustive filtration of (C∞(Pm|n), || ||◦∞):

∪∞
k=1Σk(Pm|n) = C(Pm|n) .

The Berezin transform βk : C(Pm|n) → Σk(Pm|n) is here defined as:

βk(f)([Z]) = σk(Tk(f)) =
b0k + b1k

voltr(Pm|n)

∫

Pm|n

dµ([Y ])

( |(Y, k|Z, k)|
(Y, k|Y, k)(Z, k|Z, k)

)2k

.

As in the quantization of affine space, Berezin and Toeplitz quantizations use Wick and

anti-Wick orderings, respectively.
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Remarks. As the space Pm|n is the coset space U(m + 1|n)/(U(1|0) × U(m|n)), the

Rawnsley supercoherent states can be identified with the Perelomov supercoherent states.

Rather obviously, the spaces Bk and Bk form irreducible representations of the supergroup

U(m + 1|n). For further details on the group theoretic aspects of Berezin-quantized Pm|n,

see [13].

4.5 Berezin-Bergman quantization

In [37], a quantization prescription was proposed for projective algebraic varieties, which

relied on their embedding into projective space. More explicitly, the idea was to use the

identification of supersections of the quantum bundle H0(Hk) on Pm and the Hilbert space

Bk in the quantization of the embedded variety X by factoring out an ideal. The zero locus

conditions fi = 0 definingX ⊂ Pm reducing the spaceH0(Hk) would go over into conditions

f̂i|µ〉 = 0 for all |µ〉 ∈ Bk. As shown in [10], this Berezin-Bergman quantization corresponds

to a generalized Berezin quantization. A similar construction can also be performed in the

case of Hodge supermanifolds and we outline this construction in the following.

We start from a polarized complex supermanifold (X,L) with very ample super line

bundle L and dimCH0(L) = (m|n). The homogeneous coordinate ring of X is (bi-)graded:

R(X,L) = ⊕∞
k=0H

0(Lk) =: ⊕∞
k=0Ek, and we have an isomorphism of graded algebras

φ : R
∼→ B/I. Here, B is the graded symmetric algebra B = ⊕∞

k=0E
⊙k
1 and I = ⊕∞

k=0Ik
is a graded ideal in B. The Kodaira superembedding theorem [9], gives a superembedding

defined by L in which X is presented as a projective algebraic supervariety in Pm|n with

vanishing ideal I. We have

Ik ⊂ Bk and Ek ≃ Bk/Ik . (4.37)

At every level k, one has two natural choices for introducing a super Hermitian pairing

on H0(Lk). The first is to take the usual L2-product:

〈s, t〉k =

∫

X
dµωh

⊗k(s, t) ,

while the second one is induced from B as follows:

(s1 ⊙ . . . sk, t1 ⊙ . . . tl)B =
1

k!
δk,l

∑

σ∈Sk

ǫ(σ, t1 . . . tk)(s1, tσ(1))1 . . . (sk, tσ(k))1 . (4.38)

Here ( , )1 is the superscalar product on E1, Sk is the symmetric group on k letters,

si, ti ∈ E1 and ǫ(σ, t1 . . . tk) is the Koszul sign in the graded symmetric product. Notice

that the second choice is actually the restriction of (4.7) to Bk.

Let I⊥k := {s ∈ Bk|(s, t)B = 0 ∀t ∈ Ik} and notice that we can identify this space with

Ek. First, we can identify Bk with H0(Hk), where H is the super hyperplane bundle over

Pm|n. Then we have a restriction i∗k : H0(Hk) = Bk → H0(Lk) = Ek. As Ik = keri∗k and

since i∗k is surjective, we have an isomorphism φk := Ek → I⊥k ≃ Bk/Ik. Then we define a

superscalar product ( , )k on Ek via:

(s, t)k := αk(φk(s), φk(t))B . (4.39)
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For ordinary manifolds, the choice of the normalization constants αk depended on the

volumes of X and Pm|n as well as the dimensions of Bk and Ek. In the supercase, one again

has to introduce the trace volume voltr if the classical supervolume of X or Pm|n vanishes.

We can then impose the usual condition for a “good” quantization: that under generalized

Berezin quantization, the unit superfunction 1X is mapped into the unit operator 1 on Ek.

Definition. The Berezin-Bergman quantization of (X,L) determined by the superscalar

product ( , )1 on H0(L) is the generalized Berezin quantization performed with respect to

the sequence of superscalar products ( , )k on H0(Lk) defined in (4.39).

Remarks. As the vanishing ideal I is zero in the case of Pm|n, Berezin-Bergman quanti-

zation here corresponds to ordinary Berezin quantization.

If I is generated by p homogeneous polynomials F1 . . . Fp of degrees at least two, then

we have

I⊥ = ∩p
l=1kerF̄l(Â

†) ,

where F̄ is the polynomial in ZI obtained by conjugating all coefficients of F as in the case

of ordinary manifolds, cf. [10].

5 Regularizing supersymmetric quantum field theories

As stated in the introduction, one of the major applications of Berezin-quantized manifolds

in physics is the regularization of path integrals and the numerical treatment of quantum

field theories. In this section, we extend the definition of fuzzy superscalar field theories,

i.e. superscalar field theories defined on Berezin-quantized Hodge manifolds, to some su-

persymmetric cases. For the earliest work in this direction, see [12]; our discussion will

follow along similar lines as those proposed in [38].

It should be clear that an exhaustive discussion of supersymmetric superscalar field

theories on quantized supermanifolds, which, as we will see, requires that they admit a

superfield description, cannot possibly7 be performed within this work. We will therefore

restrict our discussion to giving an example in more detail: the N = (2, 2) supersymmetric

sigma model on Berezin-quantized P1|2. We will also comment on its topological twist,

which can, in principle, be defined on an arbitrary Riemann surface. These theories are

particularly interesting, as they serve as the basic building blocks for string theories.

5.1 Fuzzy scalar field theories

Classical (real) scalar field theory on a Kähler manifold (X,ω) is usually given by an action

functional of the form

S[φ] =
1

volω(X)

∫

X

ωn

n!

(
φ∆φ+ V (φ)

)
, φ ∈ C∞(X,R) , (5.1)

where ∆ is the Laplace operator on (X,ω) and V (φ), the potential, is a polynomial in φ

with real coefficients. To study a similar field theory on a quantized manifold, we need a

7cf. e.g. [39] just for the case of two dimensions
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quantization of the classical Laplace operator. Two such quantizations are possible and we

will briefly review them below. For a more detailed discussion, see [10].

In the following, consider a quantized Hodge manifold (X,ω,Ek) with symbol space

Σk = σ(End(Ek)). In general, there are two ways of defining a quantum analogue to an

operator D : C∞(X) → C∞(X). First, we define by Dk a truncated map Σk → Σk as:

Dk := πk ◦ D|Σk
, (5.2)

where πk is the orthoprojector with respect to the ordinary L2-scalar product on (X,ω).

The Berezin push DB
k of an operator D is then defined as the following map DB

k :

End(Ek) → End(Ek):

DB
k := Qk ◦ Dk ◦ σk . (5.3)

Roughly speaking, the Berezin push of an operator acts as the corresponding operator in

the continuum (up to truncations), and we have in particular in the case of the identity

operator D(f) = f for all f ∈ C∞(X) the quantization DB
k (f̂) = f̂ for all f̂ ∈ End(Ek).

Hermitian operators with respect to the natural L2-norm on (X,ω) are, however, not

mapped into Hermitian operators with respect to the natural Hilbert-Schmidt norm on

End(Ek).

Alternatively, we can define the Berezin-Toeplitz lift of an operator D : C∞(X) →
C∞(X) as

D̂k := Tk ◦M 1

ǫk

◦ D ◦ σk , (5.4)

D̂ : End(Ek) → End(Ek), where Mα(f) := αf , α, f ∈ C∞(X) is the multiplication opera-

tor. This operator will not map the identity on C∞ onto the identity on End(Ek), but the

hermiticity of operators is preserved under quantization.

As a side remark, note that the definition of a Berezin push and a Berezin-Toeplitz lift

of operators readily extends to quantized supermanifolds. For the Berezin push, one can

use the orthoprojector πk defined in the paragraph after equation (4.34).

Because hermiticity of the quantum Laplace operator is the crucial property, we define

a quantized version of the action functional (5.1) as

Sk[φk] := tr
(
φk∆̂k(φk) + V (φk)

)
, φk ∈ End(Ek) . (5.5)

As the functional Sk lives on the finite dimensional space End(Ek), the corresponding

functional integral

Z =

∫

End(Ek)
D[φk] e−Sk[φk] (5.6)

is a finite-dimensional integral and thus well-defined. This is what people refer to as

fuzzy quantum scalar field theory [2, 10, 40], and besides providing a nice regularization

procedure, using the quantized form (5.6), one can easily study the field theory (5.1)

numerically on a computer [41, 42].

– 33 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
5

5.2 The N = (2, 2) supersymmetric sigma model on C1|2

Considering the supersymmetric sigma model with (2, 2) supersymmetries on the super-

space C1|2 is particular convenient as this space has the same volume form as P1|2 on one

of the standard patches, for which a bosonic homogeneous coordinate, e.g. z0, does not

vanish. The reason for this is that P1|2 is a Calabi-Yau supermanifold.

Calabi-Yau supermanifolds. The spaces Pn|n+1 come with a nowhere vanishing holo-

morphic volume form. Using the usual inhomogeneous coordinates z1
0 , . . . , z

n
0 , ζ

1
0 , . . . , ζ

n+1
0

on the patch U0 : z0 6= 0 of Pn|n+1, the superdeterminant in the Liouville measure (4.21)

is just a constant, and thus

Ω
n|n+1,0|0
U0

:= γ z1
0 ∧ . . . ∧ dzn

0 dζ
1
0 . . . dζ

n+1
0 (5.7)

can be extended to a non-vanishing globally holomorphic volume form. Here, γ ∈ C∗ is

an arbitrary nonvanishing constant. (Recall that vol(Pn|n+1) = 0, and therefore we cannot

normalize by the space’s natural volume, as one would usually do.) The Liouville measure

is then given by dµ = Ωn|n+1,0|0 ∧ Ω0|0,n|n+1. It is evident that the Berezinian super line

bundle of these spaces is trivial. Such spaces are referred to as Calabi-Yau supermanifolds

in the literature. Note, however, that Yau’s theorem doesn’t hold without restrictions in

the supercase, cf. [43]. In particular, the spaces Pn|n+1 are not super Ricci-flat, i.e. the

Ricci tensor

RIJ :=
∂2 log(sdet(g))

∂ZIZ̄J
, (5.8)

where g is the super Kähler supermetric obtained from an arbitrary Kähler form ω, does

not vanish. For our purposes, the existence of Ωn|n+1,0|0, or equivalently, triviality of the

Berezinian super line bundle, will prove to be sufficient.

On C1|2, we introduce the supercovariant derivatives

D1,2 =
∂

∂ζ1,2
± ζ1,2 ∂

∂z
, D̄1,2 =

∂

∂ζ̄1,2
± ζ̄1,2 ∂

∂z̄
(5.9)

as well as the generators for supersymmetry transformations

Q1,2 =
∂

∂ζ1,2
∓ ζ1,2 ∂

∂z
, Q̄1,2 =

∂

∂ζ̄1,2
∓ ζ̄1,2 ∂

∂z̄
. (5.10)

Note that the relation to the usual chiral notation is as follows:

ζ+ =
1√
2

(ζ1 − ζ2) , ζ− =
1√
2

(ζ1 + ζ2) . (5.11)

The four basic superfields on C1|2 are then given by (cf. e.g. [44, 45])

D2Φc = −D1Φc , D̄2Φc = −D̄1Φc , D+Φc = D̄+Φc = 0

D2Φac = D1Φac , D̄2Φac = D̄1Φac , D−Φac = D̄−Φac = 0

D2Φtc = −D1Φtc , D̄2Φtc = D̄1Φtc , D+Φtc = D̄−Φtc = 0

D2Φtac = D1Φtac , D̄2Φtac = −D̄1Φtac , D−Φtac = D̄+Φtac = 0

(5.12)
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corresponding to chiral (c), anti-chiral (ac), twisted chiral (tc) and twisted anti-chiral

superfields (tac), respectively. As we are working in Euclidean space, the notion of reality

is slightly more subtle than in the Minkowski case. In particular, the ordinary complex

conjugate of a chiral superfield is not an antichiral superfield, and one has to introduce a

different real structure to obtain this result. However, twisted chiral superfields are indeed

complex conjugate to twisted anti-chiral superfields and therefore we will restrict to them in

most of the following. For convenience, we introduce the chiral and anti-chiral coordinates

z+ := z + ζ1ζ2 = z + ζ+ζ− , z− := z − ζ1ζ2 = z − ζ+ζ− ,

z̄+ := z̄ + ζ̄1ζ̄2 = z̄ + ζ̄+ζ̄− , z̄− := z̄ − ζ̄1ζ̄2 = z̄ − ζ̄+ζ̄− ,
(5.13)

which satisfy D+z
− = D−z

+ = 0. From these fields, one can now construct an action using

a real function K(Φ1
c , . . . ,Φ

i
c,Φ

1
c , . . . ,Φ

i
ac,Φ

1
tc, . . . ,Φ

j
tc,Φ

1
tac, . . . ,Φ

j
tac) =: K(Φ) as follows:

S =

∫
d2zd2ζ1d2ζ2K(Φ) . (5.14)

When interpreting the superfields Φ as maps from the worldsheet C1|2 into a complex target

manifold, one is led to regard the superfunction K as the Kähler potential of the target

space if it only depends on chiral and anti-chiral superfields. We have

gab :=
∂2K(Φ)

∂Φa
c∂Φb

ac

, (5.15)

where gab is the target space supermetric. If twisted chiral superfields are included as well,

there is an analogous relation to generalized complex geometry.

One can furthermore add superpotential terms of the form

∫
d2zdζ−dζ+W (Φc) ,

∫
d2zdζ̄−dζ+Ŵ (Φtc) , (5.16)

which have to be accompanied by their complex conjugate. Here, W and Ŵ are polynomials

in the chiral and twisted chiral superfields, restricted by renormalizability of the theory.

To be concise, let us now restrict8 to a specific model which contains only twisted

chiral superfields. (Recall that a sigma model containing only twisted chiral superfields is

dual to one containing only untwisted ones). The superfield expansion of a twisted chiral

superfield reads as

Φ(z+, z̄−, ζ+, ζ̄−) = φ(z+, z̄−) + ζ+ψ̄−(z+, z̄−) + ζ̄−ψ+(z+, z̄−) + ζ+ζ̄−F (z+, z̄−)

= φ(z, z̄) + ζ+ζ−∂zφ(z, z̄) + ζ̄+ζ̄−∂z̄φ(z, z̄) + ζ+ζ−ζ̄+ζ̄−∂z∂z̄φ(z, z̄)

+ ζ+ψ̄−(z, z̄) + ζ+ζ̄+ζ̄−∂z̄ψ̄(z, z̄) + ζ̄−ψ+(z, z̄)

+ ζ̄−ζ+ζ−∂zψ
+(z, z̄) + ζ+ζ̄−F (z, z̄) .

Putting

K(Φ) = Φ̄tcΦtc and Ŵ (Φtc) = mΦ2
tc + λΦ3

tc , (5.17)

8It should be stressed, that more general models could have been treated in principle.
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we arrive at a sigma model with the component action

S =

∫
d2z

(
φ̄∂z∂z̄φ+ ∂z̄φ̄∂zφ+ (∂z∂z̄φ̄)φ+ FF̄

− ψ−∂zψ
+ + ψ̄+∂z̄ψ̄

− − (∂z̄ψ
−)ψ+ + (∂zψ̄

+)ψ̄−

+ 2m2(φF − ψ̄−ψ+) + 3λ(φ2F − φψ̄−ψ+) + c.c.
)
,

(5.18)

where all fields depend only on z (non-holomorphically, in general). After integrating out

the auxiliary fields and integrating by parts, we arrive at the final form of the action

S =

∫
d2z

(
φ̄∂z∂z̄φ− ψ−∂zψ

+ + ψ̄+∂z̄ψ̄
− − (∂z̄ψ

−)ψ+ + (∂zψ̄
+)ψ̄−

+ 3|2mφ+ 3λφ2|2
)
.

(5.19)

5.3 Regularization with Berezin-quantized P1|2

To regularize the theory (5.19), we would like to obtain a supersymmetric theory on P1|2,

which, upon decompactification (or, equivalently, taking out a (super)point) turns into

the supersymmetric sigma-model on C1|2. We can then translate the theory from P1|2 to

Berezin-quantized P1|2 to obtain a finite quantum field theory.

Two issues remain to be clarified. The first one concerns the definition of chiral and

twisted chiral superfields on P1|2 and the relation with supersymmetry transformations,

while the second one is the integration over chiral and twisted chiral superspace.

As the space P1|2 is group theoretically given by the coset space U(2|2)/(U(1|0) ×
U(1|2)), its isometry group9 is U(2|2). We will work at the level of the algebra of generators

u(2|2), and we will use the following Hermitian generators:

(σIJ )AB = ϕIJδIAδJB + ϕJIδIBδJA and (ρIJ)AB = iϕIJδIAδJB − iϕJIδIBδJA, (5.20)

where I, J,A,B ∈ 0, . . . , 3 and ϕIJ = eπi/2Ĩ−πi/2J̃ is a phase factor necessary to guarantee

that our norm of vectors in C2|2 is invariant. In particular, σIJ and ρIJ generate space-

time rotations for I ≤ 1, J ≤ 1, R-symmetry rotations for I ≥ 2, J ≥ 2 and supersymmetry

transformations in all other cases.

The representation R of these generators acting on superfunctions on C2|2 is given by

the differential operators

R(σIJ) = ZIσIJ ∂

∂ZJ
− Z̄IσIJ ∂

∂Z̄J
and R(ρIJ) = ZIρIJ ∂

∂ZJ
+ Z̄IρIJ ∂

∂Z̄J
, (5.21)

where (ZI) = (z0, z1, ζ1, ζ2) are the coordinates on C2|2. Note that |Z|2 is invariant as

expected. To obtain the corresponding action on P1|2, we have these symmetries act on a

certain patch U on the inhomogeneous coordinates ZI
0 . Consider again the patch U0 for

which z0 6= 0, then we have in addition to the generators

R0(σIJ) = ZI
0σ

IJ ∂

∂ZJ
0

− Z̄I
0σ

IJ ∂

∂Z̄J
0

and R0(ρIJ) = ZI
0ρ

IJ ∂

∂ZJ
0

+ Z̄I
0ρ

IJ ∂

∂Z̄J
0

, I, J ≥ 1

9Here, we choose to use the full unitary supergroup to avoid discussing the projective subgroup PSU(2|2).
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the generators

R0(σ00) = 0 , R0(σ0I) =
∂

∂ZI
0

− ZI
0E − ∂

∂Z̄I
0

+ Z̄I
0 Ē ,

R0(ρ0I) = i

(
∂

∂ZI
0

+ ZI
0E +

∂

∂Z̄I
0

+ Z̄I
0 Ē
)

for i ≤ 1 and E := z1
0∂z1

0
+ ζ1

0∂ζ1
0

+ ζ2
0∂ζ2

0
. Note that the expression |Z0|2 := 1+ zz̄+ iζ1ζ̄1 +

iζ2ζ̄2 is only invariant under transformations R0(σIJ ) with I, J ≥ 1. When decompacti-

fying P1|2 to C1|2, the Euler operators E vanish, and we can thus identify the differential

operators D1 and D2 with the generators according to

D1 = DR0

1 =
1

2
(R0(σ02) − iR0(ρ02) +R0(σ21) − iR0(ρ21)) ,

D2 = DR0

2 =
1

2
(R0(σ03) − iR0(ρ03) −R0(σ31) + iR0(ρ31)) .

(5.22)

Using the corresponding differential operators DR
1,2 in the representation R, we have an

action on monomials in the homogeneous coordinates, which preserves their bi-degree.

Recall that superfunctions on P1|2 are written in terms of basis superfunctions

ZI1 . . . ZIkZ̄J1 . . . Z̄Jk

|Z|2k
, (5.23)

and the action of DR
1,2 on these superfunctions is given as the action of the differential

operators in coordinates of C2|2 on the numerator. (The denominator is invariant un-

der u(2|2)-transformations.) This allows us to define all the chiral superfields as above

in (5.12). Note that a superfield of any of the possible chiralities will transform into a

non-chiral superfield under arbitrary u(2|2) supersymmetry transformations, as DR
1,2 does

not anticommute with general supersymmetry transformations. However, the number of

independent component fields remains evidently the same and is merely reshuffled in the

field expansion. We will come back to this point later.

The second issue is the integration over chiral and anti-chiral superspace to allow for

the inclusion of a non-trivial superpotential. As the only invariant measure available is the

full integral over superspace, we have to insert a superfunction, which takes care of the

antichiral part: ∫
d2zdζ+dζ̄− →

∫
dµ([Z])

ζ̄+ζ−

|Z|2 , (5.24)

where dµ([Z]) is again the super Liouville measure on P1|2. Note that indeed ζ̄+ζ−

|Z|2 ∈
C∞(P1|2). After integrating out the auxiliary fields, the factor 1

|Z|2
will produce a factor of

1
|z|4

in front of potential terms, the usual Liouville measure on P1. This will produce the

correct planar limit, after decompactifying P1 to C1.

To regularize this model on P1|2 by Berezin-quantizing the worldsheet as (P1|2, E :=

O(k)), we need to translate all the above machinery to the quantum situation. First,

superfields are now elements of Endk, and this space is spanned by the operators

Â†
I1
. . . Â†

Ik
|0〉〈0|ÂJ1

. . . ÂJk
, (5.25)
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cf. section 5. The u(2|2) invariant integral is given by the supertrace
∫

P1|2
dµ(z)σ(f̂ ) =

vol′(P1|2)

b0k + b1k
str(f̂) (5.26)

and the representation R̂ of the generators σIJ and ρIJ on Endk is the usual

Schwinger representation

R̂(σIJ)(f̂) = {[Â†
Aσ

IJ
ABÂB , f̂ ]} , R̂(ρIJ)(f̂) = {[Â†

Aρ
IJ
ABÂB , f̂ ]} . (5.27)

While the definition of twisted chiral and twisted anti-chiral superfields in this manner goes

over into ordinary twisted chiral and twisted anti-chiral superfields upon decompactifica-

tion, one might argue that it is still too restrictive. Having in mind that D1 and D2 act

only holomorphically on the fields, one could restrict the actions of R̂(σIJ) in the definition

of twisted chiral superfields to their left-actions, which amounts to a holomorphic action on

the corresponding fields. This point is quite subtle and requires certainly further scrutiny.

The integral over chiral superspace can now be performed in two different ways. Ei-

ther, we multiply the operator to be integrated over chiral superspace with the operator

corresponding to the superfunction ζ̄+ζ−

|Z|2
and integrate via the supertrace on Endk, or we

add the corresponding creation and annihilation operators to all superfunctions by inser-

tion and integrate by taking the supertrace over Endk+1. Here, we will choose to work

with the former procedure. Putting everything together, we have the following action:

S =
vol′(P1|2)

b0k + b1k
str
(

Φ̂†
tcΦ̂tc + Ψ̂Ŵ (Φ̂tc) + Ψ̂†Ŵ †(Φ̂†

tc)
)
, (5.28)

where Ŵ (Φ̂ch) is again a polynomial in its argument Φ̂ch and

Ψ̂ := α†
+Â

†
I1
. . . Â†

Ik−1
|0〉〈0|ÂIk−1

. . . ÂI1α− . (5.29)

The superfunctional integral has now to be taken over all operators corresponding to twisted

chiral fields

Z =

∫
DΦtc exp(−S) ; (5.30)

it is a finite integral and thus provides a regularization of the N = (2, 2) supersymmetric

sigma model in two dimensions in the usual sense of fuzzy geometry.

Remarks. The original sigma-model on C1|2 was invariant under 4 (real) supercharges:

Q±, Q̄±. The algebra of isometries of P1|2 contains, however, 8 odd generators. This shows

up in the fact that the definition of a twisted chiral superfield is not invariant10 under half

of the u(2|2) generators. Without superpotential term, the global symmetry group of the

action (5.28) is indeed U(2|2), and the supersymmetry transformations modifying twisted

chiral superfields merely reshuffle the component fields. This invariance is easily seen as

the D-term str(Φ̂†
tcΦ̂tc) is evidently invariant under transformations Φ̂tc → Û Φ̂tcÛ

†. A

superpotential term, however, breaks the supersymmetry of the model down to the same

as the one on C1|2, which we set out to regularize in the first place, and this was in fact to

be expected.

10This is clear from group theoretic considerations.
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5.4 Comments on the topological twist

In a more general context, the above mentioned sigma model can be defined on an arbitrary

Riemann surface with canonical bundle K. The associated super Riemann surface is a split

supermanifold which is the total space of the (real) rank 4 vector bundle

(ΠK1/2 ⊕ ΠK̄1/2) ⊕ (ΠK1/2 ⊕ ΠK̄1/2) . (5.31)

In the language of [18] and section 2, this is a superspace (X,A) such that Xred is a Riemann

surface and Â isomorphic to the sheaf of supersections of the vector bundle (5.31) with A
globally isomorphic to ∧n

Ared
Â. In our example, K = O(2) and ζ+, ζ̄+ are supersections of

the first two super line bundles, while ζ−, ζ̄− are supersections of the second two. Applying

a topological twist (see e.g. [44]), we deform this geometry to

(ΠO ⊕ ΠK) ⊕ (ΠO ⊕ ΠK̄) . (5.32)

In our example, the resulting space would be the weighted superprojective space

WP1|2(1, 1|0, 2), which is the total space of the vector bundle O ⊕ ΠO(2) over P1.

While on flat space, this twist corresponds to a mere rewriting, on curved space, the

twist allows for defining supersymmetric models on non-spin manifolds and avoids the

introduction of spinors altogether. In particular, the Graßmann coordinates parametrizing

the trivial super line bundle give rise to supercharges which carry Lorentz spin 0 and are

thus invariant under space-time rotations. This guarantees the preservation of a certain

amount of supersymmetry.

The definition of chiral and twisted chiral fields on this geometry proceeds as before,

and following the procedure of the untwisted case, one eventually arrives at a topologically

twisted sigma model on quantized WP1|2(1, 1|0, 2).

6 Summary and directions for further research

In this paper, we defined generalized Berezin and Berezin-Toeplitz quantization of Hodge

supermanifolds. A prerequisite for this quantization was the given extension of the Rawns-

ley coherent states to the case of supermanifolds. Explicitly, we constructed the quantiza-

tion of both affine and projective superspaces. Eventually, we showed how one can employ

such quantized supermanifolds as supersymmetry-preserving regulators of quantum field

theories; we proposed definitions of ordinary and twisted N = (2, 2) supersymmetric sigma

models on the compactified superspace P1|2.

Taking our results as a starting point, one has a number of potentially interesting

directions for future research. Clearly, it would be desirable to expose more supersymmetric

field theories admitting a regularization by Berezin-quantized Hodge supermanifolds. One

is evidently restricted to such theories which allow for a superfield formulation. However it

is unclear, whether one is limited to using the quantizations of Calabi-Yau supermanifolds

in regularizing supersymmetric field theories on flat superspace. Moreover, an extension

to supersymmetric gauge theories is desirable, having in mind the ultimate aim of the

minimal supersymmetric standard model regularized on a fuzzy superspace. Also, one

– 39 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
5

would expect that the topological twist plays a crucial role in regularizing supersymmetric

field theories using more general quantized Hodge supermanifolds as it allows for working

without spinors.

A natural question with respect to the nonlinear sigma models regularized above would

be whether mirror symmetry holds after regularization. This would require a more general

analysis of N = (2, 2) supersymmetric nonlinear sigma models on Calabi-Yau manifolds

but this “fuzzy mirror symmetry” would be useful in the associated N = 2 superconformal

algebra calculations and thus it might help with numerical studies of mirror symmetry.

Numerical studies11 of the models proposed above and their generalizations can be

readily performed, and the behavior of the regulated models should be compared to the

conventional knowledge of supersymmetric field theories. Note also that here, one is an-

alyzing a supermatrix model, and the application of matrix model techniques to these

regulated supersymmetric field theories in the spirit of [47] might yield more interesting

results than in the non-supersymmetric case.

More formally, it seems to be a mere technicality to extend the relation between ge-

ometric quantization and formal deformation quantization using Berezin-Toeplitz quanti-

zation to the case of supermanifolds. Eventually, one might wish to extend the known

relationship between quantizable Hermitian symmetric spaces and the Toeplitz quantiza-

tion procedure [16] to the case of supermanifolds.
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